This study aimed to compare the cyclic fatigue resistance of ProTaper Next, Hyflex CM, 2Shape, and TF-Adaptive nickel-titanium endodontic file systems with various alloy properties and production methods and investigate the fractured cross-sectional surface of files due to cyclic fatigue by scanning electron microscopy (SEM). A total of 120 instruments were used (n=30). For standardization, #25/.06 apical diameter and taper angle were selected for each file system. The experiment of files was subjected to a static cyclic fatigue model. The time for files' failure was recorded with a digital chronometer and multiplied by the rotation speed to calculate the number of cycles. Kolmogorov-Smirnov, one-way ANOVA, and post hoc Bonferroni analysis were used for statistical analysis. Statistical significance was set at < 0.05. The number of cycles for the failure of files was compared between the groups, and significant differences were found ( < 0.05). The number of cycles for instrument failure was recorded from the highest to the lowest as follows: Hyflex CM, TF-Adaptive, ProTaper Next, and 2Shape. The files were fractured at different average numbers of cycles in an artificial canal in all the groups. The Hyflex CM demonstrated better cyclic fatigue resistance than TF Adaptive, ProTaper Next, and 2Shape file systems. Factors such as production patterns, alloy properties, and the phase in which the files were produced might affect the lifespan of file systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8538148PMC
http://dx.doi.org/10.34172/joddd.2021.029DOI Listing

Publication Analysis

Top Keywords

cyclic fatigue
20
file systems
16
fatigue resistance
12
number cycles
12
protaper hyflex
8
hyflex 2shape
8
2shape tf-adaptive
8
alloy properties
8
failure recorded
8
analysis statistical
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!