A 29-year-old female experienced chronic progressive peripheral neuropathy since childhood and was diagnosed with Charcot-Marie-Tooth disease (CMT) at age 15. She developed recurrent, fever-induced rhabdomyolysis (RM) at age 24. EMG studies showed decreased amplitude of compound muscle action potential, declined motor conductive velocity, and absence of sensor nerve action potential. Acylcarnitine analysis revealed elevated C16-OH, C18-OH, and C18:1-OH. Muscle biopsy showed scattered foci of necrotic myofibers invaded by macrophages, occasional regenerating fibers, and remarkable muscle fiber type grouping. Whole-exome sequencing identified two novel heterozygous mutations: c.490G>A (p.G164S) and c.686G>A (p.R229Q) in gene encoding the β-subunit of mitochondrial trifunctional protein (MTP). Reduction of long-chain fatty acid dietary restrictions alleviated symptoms effectively. Our study indicates that the defect of the MTP β-subunit accounts for both CMT and RM in the same patient and expands the clinical spectrum of disorders caused by the HADHB mutations. Our systematic review of all MTPD patients with dietary treatment indicates that the effect of dietary treatment is related to the age of onset and the severity of symptoms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8546186PMC
http://dx.doi.org/10.3389/fneur.2021.694966DOI Listing

Publication Analysis

Top Keywords

charcot-marie-tooth disease
8
mitochondrial trifunctional
8
trifunctional protein
8
action potential
8
dietary treatment
8
disease episodic
4
episodic rhabdomyolysis
4
rhabdomyolysis novel
4
novel mutations
4
mutations subunit
4

Similar Publications

Charcot-Marie-tooth disease type 1 phenotype in a family with a novel myelin protein zero variant.

J Neurol Sci

January 2025

Laboratory of Clinical Neurophysiology, School of Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, Stilponos Kyriakidi 1, Thessaloniki, Greece. Electronic address:

View Article and Find Full Text PDF

Favorable response to ketogenic diet therapy in a patient with -related epilepsy.

Epilepsy Behav Rep

March 2025

Section of Pediatric Neurology, Department of Pediatrics, The University of Chicago, Chicago, IL, United States.

Dynein Cytoplasmic 1 Heavy chain 1 (-related disorders are a spectrum of conditions including neurodevelopmental disorders, congenital brain malformations, and neuromuscular diseases. These clinical features may co-occur, with four main disease entities including epilepsy with developmental epileptic encephalopathy such as infantile epileptic spasms syndrome (IESS) and Lennox-Gastaut syndrome (LGS), axonal Charcot-Marie-Tooth disease type 2O, spinal muscular atrophy with lower extremity-predominance (SMALED), and congenital cortical malformations. Epilepsy associated with this disorder often becomes drug-resistant and requires multiple medications and, in some cases, non-pharmacological treatments.

View Article and Find Full Text PDF

Biallelic intronic pentanucleotide repeat expansions, mainly (AAGGG)exp and/or (ACAGG)exp in RFC1, are detected in cerebellar ataxia, neuropathy and vestibular areflexia syndrome, late-onset ataxia, and in a wide disease spectrum including Charcot-Marie-Tooth disease, multiple system atrophy, and Parkinson's disease (PD). However, the genotype-phenotype correlation and underlying mechanism are mostly unknown. We screened RFC1-repeat expansions in 1445 patients with parkinsonism.

View Article and Find Full Text PDF

Phosphodiesterase 4D inhibition improves the functional and molecular outcome in a mouse and human model of Charcot Marie Tooth disease 1 A.

Biomed Pharmacother

January 2025

Laboratory for Functional Imaging & Research on Stem Cells, BIOMED, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium. Electronic address:

Charcot-Marie-Tooth disease type 1A (CMT1A) is an inherited peripheral neuropathy caused by a duplication of the peripheral myelin protein 22 (PMP22) gene. It is primarily marked by Schwann cell dedifferentiation and demyelination, leading to motor and sensory deficits. Cyclic adenosine monophosphate (cAMP) is crucial for Schwann cell differentiation and maturation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!