Semantic information in the human brain is organized into multiple networks, but the fine-grain relationships between them are poorly understood. In this study, we compared semantic maps obtained from two functional magnetic resonance imaging experiments in the same participants: one that used silent movies as stimuli and another that used narrative stories. Movies evoked activity from a network of modality-specific, semantically selective areas in visual cortex. Stories evoked activity from another network of semantically selective areas immediately anterior to visual cortex. Remarkably, the pattern of semantic selectivity in these two distinct networks corresponded along the boundary of visual cortex: for visual categories represented posterior to the boundary, the same categories were represented linguistically on the anterior side. These results suggest that these two networks are smoothly joined to form one contiguous map.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41593-021-00921-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!