We investigated the seismological structure beneath the equatorial Melanesian region, where is tectonically unique because an immense oceanic plateau, a volcanic chain and subduction zones meet. We conducted a multi-frequency P-wave tomography using data collected from an approximately 2-year-long seismic experiment around the Ontong Java Plateau (OJP). High-velocity anomalies were revealed beneath the center of the OJP at a depth of ~ 150 km, the middle-eastern edge of the OJP at depths of 200-300 km, and in the mantle transition zone beneath and around the OJP; low-velocity anomalies were observed along the Caroline volcanic island chain above 450 km depth. These anomalies are considered to be associated with the thick lithosphere of the OJP, remnant dipping Pacific slab, stagnant Pacific slab, and a sheet-like upwelling. The broad stagnant slab was formed due to rapid trench retreat from 48 to 25 Ma until when the OJP with thick lithosphere collided with a subduction boundary of the Pacific and Australian plates. This collision triggered slab breakoff beneath the arc where the dipping slab remained. The stagnant Pacific slab in the mantle transition zone restricted the plume upwelling from the lower mantle causing sheet-like deformed upwelling in the upper mantle.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8553740PMC
http://dx.doi.org/10.1038/s41598-021-99833-5DOI Listing

Publication Analysis

Top Keywords

pacific slab
12
stagnant slab
8
ontong java
8
java plateau
8
mantle transition
8
transition zone
8
thick lithosphere
8
stagnant pacific
8
slab
7
ojp
6

Similar Publications

Control of slab tears and slab flat wedging on volcanism in the Alaska subduction zone.

Sci Rep

October 2024

School of Geophysics and Measurement-control Technology, East China University of Technology, NO.418, Guanglan Street, Nanchang, Jiangxi, China.

Multistage plate subduction plays a crucial role in magmatism; however, the mechanisms by which deep geodynamic processes govern volcanism in the Alaska subduction zone remain controversial. Using numerous travel-time data from several seismic arrays, we constructed high-resolution tomographic models to investigate the velocity structure of the Pacific Plate and Yakutat slab. Our tomographic results revealed high-velocity anomalies in the Pacific Plate and Yakutat slab, while the low-velocity areas within the Pacific Plate were identified as slab tears.

View Article and Find Full Text PDF

Water is essential to the formation of intracontinental granites, but its origin remains elusive. Here we address this scientific problem by analyzing D/H isotopes of apatites, hydrous minerals in Jurassic and Early Cretaceous granites and basalts from eastern North China Craton, where water was previously interpreted as derived from subducting slab. Results reveal extremely low δD values in pristine Early Cretaceous granitic (-203‰ to -127‰) and basaltic (-197‰ to -107‰) apatites, contrasting with relatively high δD values (-137‰ to -47‰) in Jurassic granites.

View Article and Find Full Text PDF

The Pacific large low-shear-velocity province (LLSVP), as revealed by cluster analysis of global tomographic models, hosts multiple internal anomalies, including a notable gap (~20° wide) between the central and eastern Pacific. The cause of the structural gap remains unconstrained. Directly above this structural gap, we identify an anomalously thick mantle transition zone east of the East Pacific Rise, the fastest-spreading ocean ridge in the world, using a dense set of precursors.

View Article and Find Full Text PDF

The Lithosphere-Asthenosphere Boundary (LAB) beneath oceanic plates is generally imaged as a sharp seismic velocity reduction, suggesting the presence of partial melts. However, the fate of a melt-rich LAB is unclear after these plates descend into the mantle at subduction zones. Recent geophysical studies suggest its persistence with down-going old and cold slabs, but whether or not it is commonly present remains unclear, especially for young and warm slabs such as in the Cascadia subduction zone.

View Article and Find Full Text PDF

It is enigmatic that M8+ earthquakes can take place at depth greater than 600 km inside the slab, where the P-T conditions generally do not favor seismic slip rate (~m/s) on faults. Here we provide fresh insights to the initial rupture and mechanism of the Mw 8.3 Sea of Okhotsk earthquake by analyzing high-frequency (up to 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!