A novel montmorillonite clay (MMT) bionanocomposite modified with chitosan (CH), carboxymethyl cellulose (CMC), and benzylimidazolium based dicationic ionic liquid with tetraethylene glycol linker (DIL) was fabricated on stainless steel wire by in situ process. The MMT-CH-CMC-DIL coated solid-phase microextraction (SPME) fiber was examined for the determination of organochlorine pesticides (OCPs) in real samples by HS-SPME-GC method using mass spectrometry (MS) and electron capture detector (ECD). Under optimized conditions, the proposed method exhibited low limits of detection (0.5 ng L with MS and 0.1 ng L with ECD detection), good linearities (R = 0.9972-0.9993 with MS and 0.9987-0.9998 with ECD detection), favorable single-fiber repeatability, and fiber-to-fiber reproducibility (less than 8.2% and 9.9% for both types of detection) and high reusability around 125 cycles. Recovery studies were carried out for OCPs in tap water, green tea, and milk samples to verify the applicability of the developed SPME-GC method.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2021.339075DOI Listing

Publication Analysis

Top Keywords

ionic liquid
8
solid-phase microextraction
8
organochlorine pesticides
8
ecd detection
8
utilization montmorillonite
4
montmorillonite nanocomposite
4
nanocomposite incorporated
4
incorporated natural
4
natural biopolymers
4
biopolymers benzyl
4

Similar Publications

Advances and challenges in green extraction of chitin for food and agriculture applications: A review.

Int J Biol Macromol

January 2025

Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States. Electronic address:

Chitin, the second most abundant polysaccharide in nature, offers numerous practical applications due to its versatile functional properties. However, its utilization is constrained by significant challenges in extraction, as well as low solubility and high crystallinity. While traditional chemical and biological fermentation methods can achieve high-purity chitin, these processes are often environmentally harmful or time/energy-consuming.

View Article and Find Full Text PDF

Electrocatalytic methane conversion via in-situ generated superoxide radicals in an aprotic ionic liquid.

J Colloid Interface Sci

January 2025

Institute of Applied Electrochemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029 PR China. Electronic address:

The electrochemical activation and partial oxidation of methane are highly attractive to enable the direct conversion in a sustainable and decentralized way. Herein, we report an electrochemical system in a non-diaphragm electrochemical bath to convert CH to CHOH and CHCHOH at room temperature, in which VO·HO as the anodic catalyst to activate CH and an aprotic ionic liquid [BMIM]BF as supporting electrolyte to control superoxide radicals (O) as the main active oxygen species generated on cathode. As a result, methanol and ethanol were identified as the liquid products, and the superior methanol Faraday efficiency (FE) of 32.

View Article and Find Full Text PDF

Desalination of seawater by forward osmosis is a technology potentially able to address the global water scarcity problem. The major challenge limiting its widespread practical application is the design of a draw solute that can be separated from water by an energetically efficient process and then reused for the next cycle. Recent experiments demonstrate that a promising draw solute for forward-osmosis desalination is tetrabutylphosphonium 2,4,6-trimethylbenzenesulfonate ([P][TMBS]).

View Article and Find Full Text PDF

To balance the stability and dissolution of polyacrylamide (PAM), emulsion drag reducers dominate the successful operation of volumetric fracturing. Herein, a pH-switchable four-tailed ionic liquid surfactant (OA/Cyclen) is synthesized by oleic acid (OA) and 1,4,7,10-tetraazacyclododecane (Cyclen). The four-tailed structure of OA/Cyclen enhances the stability of the emulsion polymerization reactor and supplies enough switchable sites for triggering the intensified release of the PAM emulsion.

View Article and Find Full Text PDF

Natural Eutectic Solvent-Based Temperature-Controlled Liquid-Liquid Microextraction and Nano-Liquid Chromatography for the Analysis of Herbal Aqueous Samples.

Foods

December 2024

Departamento de Química, Área de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38206 San Cristóbal de La Laguna, Tenerife, Spain.

In this work, two novel (-)-menthol-based hydrophobic natural eutectic solvents with vanillin and cinnamic acid were prepared and applied as extraction solvents. In this regard, 12 endocrine disruptors, including phenol, 2,4-dimethylphenol, 2,3,6-trimethylphenol, 4--butylphenol, 4--butylphenol, 4--amylphenol, 4--hexylphenol, 4--octylphenol, 4--heptylphenol, 4--octylphenol, and 4--nonylphenol and bisphenol A, were studied in a green tea drink. A temperature-controlled liquid-liquid microextraction was used as the extraction method, and nano-liquid chromatography-ultraviolet detection was used as the separation and determination system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!