Herein, a facile protocol of simple DNA adsorption on UV-initiated polymerization supports was proposed for effectively fabricating aptamer-based affinity monolithic column. Hydrophilic cationic monolith with an excellent mechanical stability was achieved within 7 min and then massive aptamers were directly bound by DNA charge-dependent adsorption. Strong cationic quaternary ammonium-based monomer was employed to provide effective and stable positive charge surface for aptamer immobilization in a wide range of pH. An ultra-high aptamer coverage density of 6813 pmol/μL was achieved to gain a highly specific online recognition performance. Limitations such as low aptamer capacity, tedious modification and time-consuming reactions in the traditional biological or covalent modification strategies were avoided. By using ochratoxin A (OTA) as the given analyte, the selective recognition and high recoveries were successfully achieved, and little cross-reactivity towards OTB analogue was only 0.5% even if the content of OTB got up to 125 folds of OTA. Applied to sample analysis, the satisfactory discriminations of trace OTA were obtained at 93.9 ± 1.9% - 96.5 ± 1.7%(n = 3)in beer, wheat and chicken liver samples. It might light a cost-effective access to efficiently preparing high-performance affinity monoliths towards the selective in-tube microextraction of OTA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2021.339077DOI Listing

Publication Analysis

Top Keywords

dna adsorption
8
affinity monolithic
8
monolithic column
8
facile dna
4
adsorption enabling
4
enabling ammonium-based
4
ammonium-based hydrophilic
4
hydrophilic affinity
4
column high-performance
4
high-performance online
4

Similar Publications

Digital recombinase polymerase amplification chip based on asymmetric contact angle composite interface.

Anal Chim Acta

February 2025

Institute of Microfluidic Chip Development in Biomedical Engineering, College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China. Electronic address:

Background: Digital recombinase polymerase amplification (dRPA) is an effective tool for the absolute quantification of nucleic acids and the detection of rare mutations. Due to the high viscosity or other physical properties of the reagent, this can compromise the accuracy and reproducibility of detection results, which limits the broader adoption and practical application of this technology. In this study, we developed an asymmetric contact angle digital isothermal detection (ACA-DID) chip and optimized the ACA-DID chip structure to achieve rapid digital recombinase polymerase amplification.

View Article and Find Full Text PDF

Exploiting unique NP1 interface: Oriented immobilization via electrostatic and affinity interactions in a tailored PDA/PEI microenvironment enhanced by concanavalin A.

Talanta

January 2025

College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211816, China. Electronic address:

Enzyme immobilization techniques are crucial for enhancing enzyme stability and catalytic efficiency. Traditional methods such as physical adsorption and simple covalent binding often fail to maintain enzyme activity and stability. In this study, an innovative multi-level immobilization strategy was proposed to achieve efficient targeted immobilization of nuclease P1 (NP1) by fine-tuning the surface microenvironment.

View Article and Find Full Text PDF

Selective adsorption of unmethylated DNA on ZnO nanowires for separation of methylated DNA.

Lab Chip

January 2025

Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8501, Japan.

DNA methylation is a crucial epigenetic modification used as a biomarker for early cancer progression. However, existing methods for DNA methylation analysis are complex, time-consuming, and prone to DNA degradation. This work demonstrates selective capture of unmethylated DNAs using ZnO nanowires without chemical or biological modifications, thereby concentrating methylated DNA, particularly those with high methylation levels that can predict cancer risk.

View Article and Find Full Text PDF

Ultrasensitive and high selectivity detection of fibrin using Y-shaped DNA-homing peptide doped probe on localized surface plasmon resonance platform.

Anal Chim Acta

January 2025

Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China.

Background: Localized surface plasmon resonance (LSPR) sensor has drawn continuous attention to application of the detection of antibody, protein, virus, and bacteria. However, natural recognition molecules, such as antibody, which possess some properties, including low thermal stability, complicated operation and high price, uncontrollability of length and size and a tendency to accumulate easily on the surface of chip to reduce the sensitive of method. Furthermore, common blocking agents are not suitable for development of novel biosensors.

View Article and Find Full Text PDF

Self-assembled DNA origami lattices on silicon oxide surfaces have great potential to serve as masks in molecular lithography. However, silicon oxide surfaces come in many different forms and the type and history of the silicon oxide has a large effect on its physicochemical surface properties. Therefore, we here investigate DNA origami lattice formation on differently fabricated SiOx films on silicon wafers after wet-chemical oxidation by RCA1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!