A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dysfunctional lactate metabolism in human alveolar type II cells from idiopathic pulmonary fibrosis lung explant tissue. | LitMetric

Background: Idiopathic Pulmonary Fibrosis (IPF) is the most common and progressive form of the interstitial lung diseases, leading most patients to require lung transplants to survive. Despite the relatively well-defined role of the fibroblast in the progression of IPF, it is the alveolar type II epithelial cell (AEC2) that is now considered the initiation site of damage, driver of disease, and the most efficacious therapeutic target for long-term resolution. Based on our previous studies, we hypothesize that altered lactate metabolism in AEC2 plays a pivotal role in IPF development and progression, affecting key cellular and molecular interactions within the pulmonary microenvironment.

Methods: AEC2s isolated from human patient specimens of non-fibrotic and IPF lungs were used for metabolic measurements, lactate dehydrogenase (LDH) analyses and siRNA-mediated knockdown experiments.

Results: AEC2s isolated from human IPF lung explant tissues had lower rates of oxidative metabolism and were more glycolytic lactate-producing cells than were AEC2 from control, non-fibrotic lung explant tissues. Consistent with this shift in metabolism, patient-derived IPF AEC2s exhibited LDH tetramers that have higher ratios of LDHA:LDHB (i.e., favoring pyruvate to lactate conversion) than control AEC2s. Experimental manipulation of LDHA subunit expression in IPF AEC2s restored the bioenergetic profile characteristic of AEC2 from non-fibrotic lungs.

Conclusions: These results are consistent with the concept that altered lactate metabolism may be an underlying feature of AEC2 dysfunction in IPF and may be a novel and important target for therapeutic treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8554831PMC
http://dx.doi.org/10.1186/s12931-021-01866-xDOI Listing

Publication Analysis

Top Keywords

lactate metabolism
12
lung explant
12
alveolar type
8
idiopathic pulmonary
8
pulmonary fibrosis
8
ipf
8
altered lactate
8
aec2s isolated
8
isolated human
8
explant tissues
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!