A Review on the Evaluation of the Anticholinesterase Activity Based on Ellman's Method.

Mini Rev Med Chem

Laboratório de Toxicologia, Departamento de Saúde, Universidade Estadual de Feira de Santana, Bahia, Brazil.

Published: September 2022

Inhibition of cholinesterases is a common strategy for the treatment of several disorders, especially Alzheimer´s disease. In vitro assays represent a critical step towards identifying molecules with potential anticholinesterase effect. This study aimed at providing a comprehensive review of the methodologies used in vitro for the anticholinesterase activity based on the spectrophotometry of Ellman's method. This work used two databases (PubMed and ScienceDirect) to search for original articles and selected publications between 1961 and 2019, which reported in vitro spectrophotometry assays for anticholinesterase activity. After the search process and the selection of publications, the final sample consisted of 146 articles published in several journals submitted by researchers from different countries. Although the studies analyzed in this work are all within the same conception of in vitro tests based on Ellman's method, one can observe a wide divergence in the origin and concentration of enzyme, the choice and pH of the buffer, the concentration of the substrate, the sample diluent, incubation time, temperature, and time of the spectrophotometric reading interval. There is no consensus in the methodology of studies with in vitro tests for anticholinesterase assessment. The methodological variations related to kinetic parameters may interfere in the characterization of cholinesterase inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1389557521666211027104638DOI Listing

Publication Analysis

Top Keywords

anticholinesterase activity
12
ellman's method
12
activity based
8
based ellman's
8
vitro tests
8
anticholinesterase
5
vitro
5
review evaluation
4
evaluation anticholinesterase
4
method inhibition
4

Similar Publications

Background: Alzheimer's disease (AD) is a chronic, progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and impaired reasoning. It is the leading cause of dementia in older adults, marked by the pathological accumulation of amyloid-beta plaques and neurofibrillary tangles. These pathological changes lead to widespread neuronal damage, significantly impacting daily functioning and quality of life.

View Article and Find Full Text PDF

Design, synthesis and biological evaluation of galantamine analogues for cognitive improvement in Alzheimer's disease.

Eur J Med Chem

December 2024

Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Liaoning, Shenyang, 110016, China. Electronic address:

Galantamine plays a crucial role in the management of brain disorders. In this study, a series of galantamine analogues were designed, synthesized and evaluated as potential therapeutic agents for Alzheimer's disease (AD). Compound C2, a dual inhibitor of cholinesterase, was obtained by introducing a benzylpyridine ring to the hydroxyl group of galantamine.

View Article and Find Full Text PDF

In this work, artificial neural network coupled with multi-objective genetic algorithm (ANN-NSGA-II) has been used to develop a model and optimize the conditions for the extracting of the Mentha longifolia (L.) L. plant.

View Article and Find Full Text PDF

The increasing global prevalence of Alzheimer's disease necessitates the development of novel therapeutic approaches. Neurodegenerative diseases are associated with increased oxidative stress and levels of cholinesterase enzymes. Hence, the development of cholinesterase inhibitors and antioxidants may provide neuroprotective effects.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a prevalent neurological illness that affects over 80% of aged adults globally in cases of dementia. Although the exact pathophysiological causes of AD remain unclear, its pathogenesis is primarily driven by several distinct biochemical alterations: (i) the accumulation of toxic Aβ plaques, (ii) the hyperphosphorylation of tau proteins, (iii) oxidative stress resulting in cell death, and (iv) an imbalance between the two main neurotransmitters, glutamate and acetylcholine (ACh). Currently, there are very few medications available and no treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!