A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Radiologist-supervised Transfer Learning: Improving Radiographic Localization of Pneumonia and Prognostication of Patients With COVID-19. | LitMetric

AI Article Synopsis

  • - The study evaluates how a transfer learning strategy, guided by radiologist expertise, can improve convolutional neural networks (CNNs) in identifying pneumonia on chest X-rays and predicting outcomes for COVID-19 pneumonia patients.
  • - Using a large dataset of radiographs, researchers fine-tuned a pre-existing CNN, resulting in a significant increase in detection accuracy and overlap scores for pneumonia localization.
  • - Findings suggest that CNN assessments closely align with expert radiologists' evaluations and provide strong predictive value for patient mortality and intubation likelihood, highlighting the potential of integrating radiologist feedback in machine learning systems.

Article Abstract

Purpose: To assess the potential of a transfer learning strategy leveraging radiologist supervision to enhance convolutional neural network-based (CNN) localization of pneumonia on radiographs and to further assess the prognostic value of CNN severity quantification on patients evaluated for COVID-19 pneumonia, for whom severity on the presenting radiograph is a known predictor of mortality and intubation.

Materials And Methods: We obtained an initial CNN previously trained to localize pneumonia along with 25,684 radiographs used for its training. We additionally curated 1466 radiographs from patients who had a computed tomography (CT) performed on the same day. Regional likelihoods of pneumonia were then annotated by cardiothoracic radiologists, referencing these CTs. Combining data, a preexisting CNN was fine-tuned using transfer learning. Whole-image and regional performance of the updated CNN was assessed using receiver-operating characteristic area under the curve and Dice. Finally, the value of CNN measurements was assessed with survival analysis on 203 patients with COVID-19 and compared against modified radiographic assessment of lung edema (mRALE) score.

Results: Pneumonia detection area under the curve improved on both internal (0.756 to 0.841) and external (0.864 to 0.876) validation data. Dice overlap also improved, particularly in the lung bases (R: 0.121 to 0.433, L: 0.111 to 0.486). There was strong correlation between radiologist mRALE score and CNN fractional area of involvement (ρ=0.85). Survival analysis showed similar, strong prognostic ability of the CNN and mRALE for mortality, likelihood of intubation, and duration of hospitalization among patients with COVID-19.

Conclusions: Radiologist-supervised transfer learning can enhance the ability of CNNs to localize and quantify the severity of disease. Closed-loop systems incorporating radiologists may be beneficial for continued improvement of artificial intelligence algorithms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8863580PMC
http://dx.doi.org/10.1097/RTI.0000000000000618DOI Listing

Publication Analysis

Top Keywords

transfer learning
16
radiologist-supervised transfer
8
localization pneumonia
8
patients covid-19
8
cnn
8
area curve
8
survival analysis
8
pneumonia
6
patients
5
learning
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: