Epiretinal prostheses are designed to restore vision to people blinded by photoreceptor degenerative diseases by stimulating surviving retinal ganglion cells (RGCs), which carry visual signals to the brain. However, inadvertent stimulation of RGCs at their axons can result in non-focal visual percepts, limiting the quality of artificial vision. Theoretical work has suggested that axon activation can be avoided with current stimulation designed to minimize the second spatial derivative of the induced extracellular voltage along the axon. However, this approach has not been verified experimentally at the resolution of single cells.In this work, a custom multi-electrode array (512 electrodes, 10m diameter, 60m pitch) was used to stimulate and record RGCs in macaque retinaat single-cell, single-spike resolution. RGC activation thresholds resulting from bi-electrode stimulation, which consisted of bipolar currents simultaneously delivered through two electrodes straddling an axon, were compared to activation thresholds from traditional single-electrode stimulation.On average, across three retinal preparations, the bi-electrode stimulation strategy reduced somatic activation thresholds (∼21%) while increasing axonal activation thresholds (∼14%), thus favoring selective somatic activation. Furthermore, individual examples revealed rescued selective activation of somas that was not possible with any individual electrode.This work suggests that a bi-electrode epiretinal stimulation strategy can reduce inadvertent axonal activation at cellular resolution, for high-fidelity artificial vision.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8736333PMC
http://dx.doi.org/10.1088/1741-2552/ac3450DOI Listing

Publication Analysis

Top Keywords

activation thresholds
16
bi-electrode epiretinal
8
epiretinal stimulation
8
cellular resolution
8
artificial vision
8
activation
8
bi-electrode stimulation
8
stimulation strategy
8
somatic activation
8
axonal activation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!