A new set of signals for studying detectability of an X-ray imaging system is presented. The results obtained with these signals are intended to complement the NEQ results. The signals are generated from line spread profiles by progressively removing their lower frequency components and the resulting high frequency residues (HFRs) form the set of signals to be used in detectability studies. Detectability indexes for these HFRs are obtained using a non-prewhitening (NPW) observer and a series of edge images are used to obtain the HFRs, the covariance matrices required by the NPW model and the MTF and NPS used in NEQ calculations. The template used in the model is obtained by simulating the processes of blurring and sampling of the edge images. Comparison between detectability indexes for the HFRs and NEQ are carried out for different acquisition techniques using different beam qualities and doses. The relative sensitivity shown by detectability indexes using HFRs is higher than that of NEQ, especially at lower doses. Also, the different observers produce different results at high doses: while the ideal Bayesian observer used by NEQ distinguishes between beam qualities, the NPW used with the HFRs produces no differences between them. Delta functions used in HFR are the opposite of complex exponential functions in terms of their support in the spatial and frequency domains. Since NEQ can be interpreted as detectability of these complex exponential functions, detectability of HFRs is presented as a natural complement to NEQ in the performance assessment of an imaging system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmp.2021.10.013DOI Listing

Publication Analysis

Top Keywords

set signals
12
imaging system
12
detectability indexes
12
indexes hfrs
12
high frequency
8
frequency residues
8
detectability
8
signals detectability
8
detectability studies
8
x-ray imaging
8

Similar Publications

Regressions on quantum neural networks at maximal expressivity.

Sci Rep

December 2024

Departamento de Física, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911, Leganés, Spain.

Considering a universal deep neural network organized as a series of nested qubit rotations, accomplished by adjustable data re-uploads we analyze its expressivity. This ability to approximate continuous functions in regression tasks is quantified making use of a partial Fourier decomposition of the generated output and systematically benchmarked with the aid of a teacher-student scheme. While the maximal expressive power increases with the depth of the network and the number of qubits, it is fundamentally bounded by the data encoding mechanism.

View Article and Find Full Text PDF

Neurotransmitters are released from synaptic vesicles with remarkable precision in response to presynaptic calcium influx but exhibit significant heterogeneity in exocytosis timing and efficacy based on the recent history of activity. This heterogeneity is critical for information transfer in the brain, yet its molecular basis remains poorly understood. Here, we employ a biochemically-defined fusion assay under physiologically relevant conditions to delineate the minimal protein machinery sufficient to account for various modes of calcium-triggered vesicle fusion dynamics.

View Article and Find Full Text PDF

Background: This study examined the interhemispheric integration function pattern in patients with iridocyclitis utilizing the voxel-mirrored homotopic connectivity (VMHC) technique. Additionally, we investigated the ability of VMHC results to distinguish patients with iridocyclitis from healthy controls (HCs), which may contribute to the development of objective biomarkers for early diagnosis and intervention in clinical set.

Methods: Twenty-six patients with iridocyclitis and twenty-six matched HCs, in terms of sex, age, and education level, underwent resting-state functional magnetic resonance imaging (fMRI) examinations.

View Article and Find Full Text PDF

Psychopathology of organic brain disorders.

Front Psychiatry

December 2024

Department of Psychiatry, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.

The concept of mental symptom is constructed considering not only the biological signal that determines it, but the multilayered causative factors related to intersubjective experience. However, specific brain damage might produce a set of symptoms expressed in a recognizable gestalt that helps to differentiate organic of psychogenic causation. The legacy of the theory of mental symptoms developed by German Berrios and the seminal work of Hughlings Jackson and Kurt Goldstein can contribute to this difficult task.

View Article and Find Full Text PDF

Background: Immune checkpoint inhibitors (ICIs) are a cornerstone therapy for advanced renal cell carcinoma (RCC). However, significant rates of primary resistance hinder their efficacy, and the underlying mechanisms remain poorly understood. This study aims to unravel the tumor-immune interactions and signaling pathways driving primary resistance to ICIs in RCC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!