Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by decreased memory and cognitive functions. Exosomes carry a variety of important information such as proteins, lipids, DNA and RNA of mother cells. It is reported that exosomes play critical roles in nervous system physiology and neurodegenerative diseases. However, the functions of exosomes in AD progression are not fully elucidated. In this study, we detected the expression pattern of mRNAs and miRNAs in exosomes derived from the AD and health mice. A total of 1320 mRNAs and 29 miRNAs were differentially expressed in exosomes between the two groups. Subsequently, the downregulation of Chi3l1 and upregulation of Rhog in AD mice were verified by qRT-PCR. Meanwhile, the downregulation of miR-148a-5p and upregulation of miR-27a-5p in AD group were also tested by qRT-PCR. The functions of differentially expressed mRNAs and potential target genes of miRNAs were determined by GO and KEGG analysis. According to the ceRNA hypothesis, we established an integrated ceRNA network of circRNA-lncRNA-miRNA-mRNA. In conclusion, exosomal lncRNAs, mRNAs, circRNAs and miRNAs were identified to participate in the progression of AD which might be possible biomarkers and therapeutic targets for AD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.arr.2021.101497 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!