Background & Aims: Either activation of mTORC1 due to loss of Tsc1 (tuberous sclerosis complex 1) or defective hepatic autophagy due to loss of Atg5 leads to spontaneous liver tumorigenesis in mice. The purpose of this study was to investigate the mechanisms by which autophagy contributes to the hepatic metabolic changes and tumorigenesis mediated by mTORC1 activation.

Methods: Atg5 Flox/Flox (Atg5) and Tsc1 mice were crossed with albumin-Cre mice to generate liver-specific Atg5 knockout (L-Atg5 KO), L-Tsc1 KO and L-Atg5/Tsc1 double KO (DKO) mice. These mice were crossed with p62/Sqstm1 (p62) and whole body Nrf2 KO mice to generate L-Atg5/Tsc1/p62 and L-Atg5/Tsc1-Nrf2 triple KO mice. These mice were housed for various periods up to 12 months, and blood and liver tissues were harvested for biochemical and histological analysis RESULTS: Deletion of Atg5 in L-Tsc1 KO mice inhibited liver tumorigenesis but increased mortality and was accompanied by drastically enhanced hepatic ductular reaction (DR), hepatocyte degeneration and metabolic reprogramming. Deletion of p62 reversed DR, hepatocyte degeneration and metabolic reprogramming as well as the mortality of L-Atg5/Tsc1 DKO mice, but unexpectedly promoted liver tumorigenesis via activation of a group of oncogenic signaling pathways. Nrf2 ablation markedly improved DR with increased hepatocyte population and improved metabolic reprogramming and survival of the L-Atg5/Tsc1 DKO mice without tumor formation. Decreased p62 and increased mTOR activity were also observed in a subset of human hepatocellular carcinomas.

Conclusions: These results reveal previously undescribed functions of hepatic p62 in suppressing tumorigenesis and regulating liver cell repopulation and metabolic reprogramming resulting from persistent mTORC1 activation and defective autophagy.

Lay Summary: Metabolic liver disease and viral hepatitis are common chronic liver diseases and risk factors of hepatocellular carcinoma, which are often associated with impaired hepatic autophagy and increased mTOR activation. Using multiple genetically engineered mouse models of defective hepatic autophagy and persistent mTOR activation, we dissected the complex mechanisms behind this observation. Our results uncovered an unexpected novel tumor suppressor function of p62/Sqstm1, which regulated liver cell repopulation, ductular reaction and metabolic reprogramming in liver tumorigenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8858859PMC
http://dx.doi.org/10.1016/j.jhep.2021.10.014DOI Listing

Publication Analysis

Top Keywords

metabolic reprogramming
20
liver tumorigenesis
16
ductular reaction
12
hepatic autophagy
12
dko mice
12
mice
11
liver
9
mtorc1 activation
8
activation defective
8
defective hepatic
8

Similar Publications

Discovery of Metabolic Reprogramming 2-Quinolones as Effective Antimicrobials for MRSA-Infected Wound Therapy.

J Med Chem

January 2025

State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.

To date, the abuse of antibiotics and a gradual decline in novel antibiotic discovery enlarge the threat of drug-resistant bacterial infections, especially methicillin-resistant (MRSA). Herein, inspired by the unique structures and antibacterial activities of 2-quinolones, a class of novel 2-quinolones with substituted pyridines was synthesized. Notably, compound , the derivative with a methylpyridine fragment, showed potent antibacterial and antibiofilm activities, especially for MRSA strains (MIC = 0.

View Article and Find Full Text PDF

Nonantibiotic strategies are urgently needed to treat acute drug-resistant bacterial pneumonia. Recently, nanomaterial-mediated bacterial cuproptosis has arisen widespread interest due to its superiority against antibiotic resistance. However, it may also cause indiscriminate and irreversible damage to healthy cells.

View Article and Find Full Text PDF

Purpose: Major cardiovascular surgery imposes high physiologic stress, often causing severe organ dysfunction and poor outcomes. The underlying mechanisms remain unclear. This study investigated metabolic changes induced by major cardiovascular surgery and the potential role of identified metabolic signatures in postoperative acute kidney injury (AKI).

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) in obese patients remains challenging. Recent studies have linked obesity to an increased risk of TNBC and malignancies. Through multiomic analysis and experimental validation, a dysfunctional Eukaryotic Translation Initiation Factor 3 Subunit H (EIF3H)/Yes-associated protein (YAP) proteolytic axis is identified as a pivotal junction mediating the interplay between cancer-associated adipocytes and the response to anti-cancer drugs in TNBC.

View Article and Find Full Text PDF

Background: Recent research has highlighted lactate's crucial role in epigenetic regulation, particularly by influencing histone modifications that drive the initiation and progression of hepatocellular carcinoma (HCC). While mitochondria are known to regulate tumor behavior, the interaction between lactate metabolism and mitochondrial function in cancer tissues remains underexplored. Understanding this relationship may provide deeper insights into tumor metabolic reprogramming and reveal novel therapeutic targets for HCC and other malignancies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!