Regulate the hydrophobic motif to enhance the non-classical secretory expression of Pullulanase PulA in Bacillus subtilis.

Int J Biol Macromol

National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.

Published: December 2021

Bacillus subtilis has been widely used as a prokaryotic host for the secretory expression of heterologous proteins. In this study, a pullulanase (PulA) from Anoxybacillus sp. LM18-11 was firstly identified to be expressed in Bacillus subtilis 1A751 through non-classical secretion pathway. Results showed that both the N- and C-terminal regions of PulA were essential for its soluble expression. To explore its specific structural basis of secretion in B. subtilis, we revealed a hydrophobic motif A501-H507 which is vital for the secretion of the whole protein of PulA. Through a series of site-specific mutagenesis, the triple-sites mutants R503E/I506E/H507E and R503E/I506Y/H507E showed the highest extracellular activity (160.07 U/mL) and total activity (243.37 U/mL) which was 1.71 times and 1.55 times higher than those of PulA. The highest secretion rate of mutant I506E/H507E was more than 50% which was 34.72% higher comparing with that of PulA. The glutamic acid substitution on these three key surface sites which decreased the surface hydrophobicity of that region was confirmed to be beneficial to improve the secretory expression of PulA. This novel discovery for the secretory expression of PulA in B. subtilis would make a new perspective on regulating a kind of non-classical secretion in B. subtilis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2021.10.164DOI Listing

Publication Analysis

Top Keywords

secretory expression
16
bacillus subtilis
12
hydrophobic motif
8
pula
8
pullulanase pula
8
non-classical secretion
8
secretion subtilis
8
expression pula
8
subtilis
6
expression
5

Similar Publications

Cells are subjected to dynamic mechanical environments which impart forces and induce cellular responses. In age-related conditions like pulmonary fibrosis, there is both an increase in tissue stiffness and an accumulation of senescent cells. While senescent cells produce a senescence-associated secretory phenotype (SASP), the impact of physical stimuli on both cellular senescence and the SASP is not well understood.

View Article and Find Full Text PDF

Aims: Progesterone receptor (PR) is a crucial prognostic marker in breast cancer. However, achieving consistent results in PR immunohistochemistry (IHC) remains challenging due to the lack of well-defined low-positive controls. This study aimed to identify benign tissues with consistent low-level PR expression to serve as ideal controls for IHC.

View Article and Find Full Text PDF

Nb-FAR-1: A key developmental protein affects lipid droplet accumulation and cuticle formation in Nippostrongylus brasiliensis.

PLoS Negl Trop Dis

January 2025

State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China.

Fatty acid and retinol binding proteins (FARs) are lipid-binding protein that may be associated with modulating nematode pathogenicity to their hosts. However, the functional mechanism of FARs remains elusive. We attempt to study the function of a certain FAR that may be important in the development of Nippostrongylus brasiliensis.

View Article and Find Full Text PDF

Critical Insights into LEAP2 Biology and Physiological Functions: Potential Roles Beyond Ghrelin Antagonism.

Endocrinology

January 2025

Grupo de Neurofisiología- Instituto Multidisciplinario de Biología Celular (IMBICE) (Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de La Plata, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires), La Plata, Argentina.

Liver-expressed antimicrobial peptide 2 (LEAP2) has recently emerged as a novel hormone that reduces food intake and glycemia by acting through the growth hormone secretagogue receptor (GHSR), also known as the ghrelin receptor. This discovery has led to a fundamental reconceptualization of GHSR's functional dynamics, now understood to be under a dual and opposing regulation. LEAP2 exhibits several distinctive features.

View Article and Find Full Text PDF

Metabolome and RNA-seq reveal discrepant metabolism and secretory metabolism profile in skeletal muscle between obese and lean pigs at different ages.

Sci China Life Sci

January 2025

Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.

Metabolites and metabolism-related gene expression profiles in skeletal muscle change dramatically under obesity, aging and metabolic disease. Since obese and lean pigs are ideal models for metabolic research. Here, we compared metabolome and transcriptome of Longissimus dorsi (LD) muscle between Taoyuan black (TB, obese) and Duroc (lean) pigs at different ages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!