Carbon based conductive materials mediated recalcitrant toxicity mitigation during anaerobic digestion of thermo-chemically pre-treated organic fraction of municipal solid waste.

Chemosphere

Environmental Biotechnology Group (EBiTG), Department of Civil Engineering, Indian, Institute of Technology, Roorkee, Roorkee, 247667, India. Electronic address:

Published: March 2022

High-temperature thermal pretreatment alone or in conjugation with chemical pretreatment (highly acidic or alkaline) produced recalcitrant compounds, which inhibits the anaerobic digestion (AD) process performance. This study aims to develop a strategy to use carbon-based conductive materials to mitigate the recalcitrant toxicity and enhance the methane generation in the downstream AD. The formation of recalcitrant compounds, mainly the furan derivatives, i.e., furfural and 5-HydroxyMethyl furfurals (5-HMF) during thermo-chemical pretreatment of OFMSW at 150 °C, 175 °C, 200 °C with 3 g/L-NaOH dose, and the alleviation of their inhibitory effects by adding 25 g/L of each of granular activated carbon (GAC) and granular biochar (GBC) during mesophilic AD were studied. The addition of conductive materials resulted in the highest biogas yield of 462 mL/gVS (GAC) and 449 mL/gVS (GBC) for 175°C-3g/L-NaOH pretreatment, which was >45% higher over control. The highest improvement of >65% in biogas yield was observed for 200°C-3g/L-NaOH pretreatment despite the lower biogas yield. The conductive materials amended digester shows a significant decrease in the 5-HMF and furfurals concertation. The highest reduction in 5-HMF (44%) and furfural (51%) concentrations were observed for 200°C-3g/L-NaOH pretreatment, and 25 g/L GBC amended tests. The score plots from the principal component analysis (PCA) of the characterization of the digestate showed that the data were significant, whereas the loading plots depicted the correlation of different experimental parameters studied (like fate of recalcitrant, biogas yield and other parameters post AD of OFMSW when aided with conductive materials). Application of regression models in all the batch assays depicted that a lag phase of 2-4 days was observed in Modified Gompertz Model (MGM), 4-5 days in Logistic Model (LM) and a rapid hydrolysis was proven with the value of hydrolysis coefficient being between 0.003 and 0.029 from the first-order (FO) model.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2021.132682DOI Listing

Publication Analysis

Top Keywords

conductive materials
20
biogas yield
16
recalcitrant toxicity
8
anaerobic digestion
8
recalcitrant compounds
8
observed 200°c-3g/l-naoh
8
200°c-3g/l-naoh pretreatment
8
pretreatment
6
conductive
5
materials
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!