Atomically thin materials (ATMs) with thicknesses in the atomic scale (typically <5 nm) offer inherent advantages of large specific surface areas, proper crystal lattice distortion, abundant surface dangling bonds, and strong in-plane chemical bonds, making them ideal 2D platforms to construct high-performance electrode materials for rechargeable metal-ion batteries, metal-sulfur batteries, and metal-air batteries. This work reviews the synthesis and electronic property tuning of state-of-the-art ATMs, including graphene and graphene derivatives (GE/GO/rGO), graphitic carbon nitride (g-CN), phosphorene, covalent organic frameworks (COFs), layered transition metal dichalcogenides (TMDs), transition metal carbides, carbonitrides, and nitrides (MXenes), transition metal oxides (TMOs), and metal-organic frameworks (MOFs) for constructing next-generation high-energy-density and high-power-density rechargeable batteries to meet the needs of the rapid developments in portable electronics, electric vehicles, and smart electricity grids. We also present our viewpoints on future challenges and opportunities of constructing efficient ATMs for next-generation rechargeable batteries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.chemrev.1c00636 | DOI Listing |
Dalton Trans
January 2025
Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, Cork, T12 R5CP, Ireland.
Layered materials, such as tungsten dichalcogenides (TMDs), are being studied for a wide range of applications, due to their unique and varied properties. Specifically, their use as either a support for low dimensional catalysts or as an ultrathin diffusion barrier in semiconductor devices interconnect structures are particularly relevant. In order to fully realise these possible applications for TMDs, understanding the interaction between metals and the monolayer they are deposited on is of utmost importance.
View Article and Find Full Text PDFNanoscale
January 2025
School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha 752050, India.
The performance of an optoelectronic device is largely dependent on the light harvesting properties of the active material as well as the dynamic behaviour of the photoexcited charge carriers upon absorption of light. Recently, atomically thin two-dimensional transition metal dichalcogenides (2D TMDCs) have garnered attention as highly prospective materials for advanced ultrathin solar cells and other optoelectronic applications, owing to their strong interaction with electromagnetic radiation, substantial optical conductivity, and impressive charge carrier mobility. WSe is one such extremely promising solar energy material.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Materials Science and Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu 804-8550, Japan.
Self-organization realizes various nanostructures to control material properties such as superconducting vortex pinning and thermal conductivity. However, the self-organization of nucleation and growth is constrained by the growth geometric symmetry. To realize highly controlled three-dimensional nanostructures by self-organization, nanostructure formation that breaks the growth geometric symmetry thermodynamically and kinetically, such as tilted or in-plane aligned nanostructures, is a challenging issue.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Laboratory of Atomic-scale and Micro & Nano Manufacturing, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
Different application domains impose diverse and often conflicting requirements on the optoelectronic performance of metal oxide semiconductor (MOS) thin-film transistors (TFTs). These varying demands present substantial challenges in the selection of TFT materials and the optimization of device performance. This study begins by examining three primary application areas for TFTs: display drivers, photodetectors, and optoelectronic synapses.
View Article and Find Full Text PDFNat Commun
January 2025
School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.
Designing efficient Ruthenium-based catalysts as practical anodes is of critical importance in proton exchange membrane water electrolysis. Here, we develop a self-assembly technique to synthesize 1 nm-thick rutile-structured high-entropy oxides (RuIrFeCoCrO) from naked metal ions assembly and oxidation at air-molten salt interface. The RuIrFeCoCrO requires an overpotential of 185 mV at 10 m A cm and maintains the high activity for over 1000 h in an acidic electrolyte via the adsorption evolution mechanism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!