This chapter will discuss reliable and relatively easy and fast strategies to evaluate the integrity of endothelial cell monolayers when infected by dengue virus (DENV). Human brain microvascular endothelial cells (HBMEC) were exploited here as general model of vessel wall core, but it may also be used as an in vitro simplified model of blood brain barrier (BBB). The integrity of endothelial cells monolayer can be inferred using a transwell culture system by: (1) measuring transendothelial electrical resistance (TEER) using a Voltohmmeter; (2) analyzing the monolayer permeability to fluorescent-conjugated proteins and fluorimetric assay; (3) investigating virus extravasation by quantitative RT-PCR and plaque conventional assay. The rational to use those strategies is that vascular alterations are often observed during dengue infection, being associated to disease severity. The vasculature core consists of a barrier of endothelial cells, which are tightly adhered by the expression of adhesion molecules and tight junctions. This structure must be preserved in order to control the flux of cells and metabolites from the circulation to the tissues and to maintain vascular homeostasis. Therefore, experimental assays that allow evaluation of endothelial integrity can be useful platforms to further understand disease pathogenesis and screen pharmaceutical interventions to control vascular disturbance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-1879-0_14 | DOI Listing |
Cell Death Dis
January 2025
Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
Aging of the brain vasculature plays a key role in the development of neurovascular and neurodegenerative diseases, thereby contributing to cognitive impairment. Among other factors, DNA damage strongly promotes cellular aging, however, the role of genomic instability in brain endothelial cells (EC) and its potential effect on brain homeostasis is still largely unclear. We here investigated how endothelial aging impacts blood-brain barrier (BBB) function by using excision repair cross complementation group 1 (ERCC1)-deficient human brain ECs and an EC-specific Ercc1 knock out (EC-KO) mouse model.
View Article and Find Full Text PDFBr J Cancer
January 2025
Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
Background: This study aimed to investigate the prognostic impact of lymph node metastasis (LNM) on patients with colorectal cancer liver metastasis (CRLM) and elucidate the underlying immune mechanisms using multiomics profiling.
Methods: We enrolled patients with CRLM from the US Surveillance, Epidemiology, and End Results (SEER) cohort and a multicenter Chinese cohort, integrating bulk RNA sequencing, single-cell RNA sequencing and proteomics data. The cancer-specific survival (CSS) and immune profiles of the tumor-draining lymph nodes (TDLNs), primary tumors and liver metastasis were compared between patients with and without LNM.
J Stroke Cerebrovasc Dis
January 2025
Department of Gerontology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China. Electronic address:
Objective: Hirudin has shown potential in promoting angiogenesis and providing neuroprotection in ischemic stroke; however, its therapeutic role in promoting cerebrovascular angiogenesis remains unclear. In this study, we aimed to investigate whether hirudin exerts neuroprotective effects by promoting angiogenesis through the regulation of the Wnt/β-catenin signaling pathway.
Methods: An in vitro model of glucose and oxygen deprivation/reperfusion (OGD/R) was established using rat brain microvascular endothelial cells (BMECs).
Eur J Pharmacol
January 2025
Academy of Integrated Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China. Electronic address:
Dihydrotanshinone I (DHT) is an active ingredient derived from Salvia miltiorrhiza. Previous studies have demonstrated that DHT can improve cardiac function in rats with myocardial ischemia-reperfusion injury (IR). However, the mechanism by which DHT improves myocardial injury in rats still requires further research.
View Article and Find Full Text PDFCell Stem Cell
January 2025
Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA. Electronic address:
Tissue-engineered vascular conduits (TEVCs) are a promising blood vessel replacement. In a recent publication in Cell Stem Cell, Park et al. developed TEVCs comprised of decellularized human umbilical arteries lined with shear-trained, human induced pluripotent stem cell (hiPSC)-derived endothelial cells (ECs) that resisted thrombosis and exhibited patency upon grafting into the rat inferior vena cava (IVC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!