It is laborious to diagnose the infections of classical swine fever virus (CSFV), porcine reproductive and respiratory syndrome virus (PRRSV), porcine circovirus type 2 (PCV2), and Suid herpesvirus 1 (SuHV-1) because of the similar clinical symptoms in piglets. Staphylococcus aureus (S. aureus), Streptococcus suis (S. suis), Salmonella choleraesuis (S. choleraesuis, serotype: 6,7:c:1,5), and Escherichia coli (E. coli) are common secondary bacterial pathogens in viral infections. Furthermore, the mixed infection of these viral and bacterial pathogens is more and more common in practical swine breeding. Therefore, a TaqMan multiplex qPCR method for simultaneous detection and differentiation of their pathogen was established in this study by designing specific primers and probes for the E2 gene of CSFV, the ORF7 gene of PRRSV, the ORF1 gene of PCV2 and the gE gene of SuHV-1, the nuc gene of S. aureus, the ef-tu gene of S. suis, the ivnA gene of S. choleraesuis, and the 23S rRNA gene of E. coli, and its specificity, sensitivity, and reproducibility were subsequently tested. The results showed that TaqMan multiplex qPCR method showed a high specificity with no cross reaction between different viruses, and a good repeatability with its coefficient of variation lower than 5%. Besides, the sensitivity of this method was also at least 10 times higher compared with conventional PCR. Overall, this study provided a reliable multiplex TaqMan qPCR method for the diagnosis and differentiation of the mentioned pathogens in pigs, laying a certain technical basis for disease prevention and control.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8882746PMC
http://dx.doi.org/10.1007/s42770-021-00633-wDOI Listing

Publication Analysis

Top Keywords

bacterial pathogens
12
qpcr method
12
multiplex taqman
8
taqman qpcr
8
simultaneous detection
8
detection differentiation
8
viral bacterial
8
taqman multiplex
8
multiplex qpcr
8
gene
8

Similar Publications

1. Faecal microbiota transplantation (FMT) is a technique that promotes gut microbiota diversity and abundance by transplantation of faeces into a recipient's gastrointestinal tract multiple routes.2.

View Article and Find Full Text PDF

The rise of multidrug-resistant (MDR) bacteria in food products poses a significant threat to public health, necessitating innovative and sustainable antimicrobial solutions. This study investigates the green synthesis of zinc oxide nanoparticles (ZnO-NPs) using extracts to evaluate their antibacterial and antibiofilm activities against MDR strains isolated from sold fish samples. The obtained results show that the contamination with reached 54.

View Article and Find Full Text PDF

is a gram-negative, obligate intracellular pathogen that causes human Q fever. Within host cells, proliferates in a spacious, acidic, lysosome-derived -containing vacuole (CCV) by a process that requires the Dot/Icm type IVB secretion system to deliver effectors that manipulate host cell functions. A previous transposon mutagenesis screen identified the gene as being important for intracellular replication of .

View Article and Find Full Text PDF

an invasive basidiomycete fungal pathogen, causes one of the most prevalent, life-threatening diseases in immunocompromised individuals and accounts for ~19% of AIDS-associated deaths. Therefore, understanding the pathogenesis of and its interactions with the host immune system is critical for developing therapeutics against cryptococcosis. Previous studies demonstrated that cells lacking polyphosphate (polyP), an immunomodulatory polyanionic storage molecule, display altered cell surface architecture but unimpaired virulence in a murine model of cryptococcosis.

View Article and Find Full Text PDF

Unlabelled: a foodborne pathogen, has the ability to invade intestinal mucosal cells, undergo intracellular proliferation, activate host immune responses, and induce diseases such as colitis. We have demonstrated that sentrin-specific protease 1 (SENP1) functions as a protective gene in the host, suppressing the inflammatory response triggered by . The host's SENP1-SIRT3 axis plays a critical role in regulating inflammation during infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!