A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evaluating robotic-assisted surgery training videos with multi-task convolutional neural networks. | LitMetric

We seek to understand if an automated algorithm can replace human scoring of surgical trainees performing the urethrovesical anastomosis in radical prostatectomy with synthetic tissue. Specifically, we investigate neural networks for predicting the surgical proficiency score (GEARS score) from video clips. We evaluate videos of surgeons performing the urethral anastomosis using synthetic tissue. The algorithm tracks surgical instrument locations from video, saving the positions of key points on the instruments over time. These positional features are used to train a multi-task convolutional network to infer each sub-category of the GEARS score to determine the proficiency level of trainees. Experimental results demonstrate that the proposed method achieves good performance with scores matching manual inspection in 86.1% of all GEARS sub-categories. Furthermore, the model can detect the difference between proficiency (novice to expert) in 83.3% of videos. Evaluation of GEARS sub-categories with artificial neural networks is possible for novice and intermediate surgeons, but additional research is needed to understand if expert surgeons can be evaluated with a similar automated system.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11701-021-01316-2DOI Listing

Publication Analysis

Top Keywords

neural networks
12
multi-task convolutional
8
synthetic tissue
8
gears score
8
gears sub-categories
8
evaluating robotic-assisted
4
robotic-assisted surgery
4
surgery training
4
training videos
4
videos multi-task
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!