A workflow to generate patient-specific three-dimensional augmented reality models from medical imaging data and example applications in urologic oncology.

3D Print Med

Center for Advanced Imaging Innovation and Research (CAI2R) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, USA.

Published: October 2021

Augmented reality (AR) and virtual reality (VR) are burgeoning technologies that have the potential to greatly enhance patient care. Visualizing patient-specific three-dimensional (3D) imaging data in these enhanced virtual environments may improve surgeons' understanding of anatomy and surgical pathology, thereby allowing for improved surgical planning, superior intra-operative guidance, and ultimately improved patient care. It is important that radiologists are familiar with these technologies, especially since the number of institutions utilizing VR and AR is increasing. This article gives an overview of AR and VR and describes the workflow required to create anatomical 3D models for use in AR using the Microsoft HoloLens device. Case examples in urologic oncology (prostate cancer and renal cancer) are provided which depict how AR has been used to guide surgery at our institution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8554989PMC
http://dx.doi.org/10.1186/s41205-021-00125-5DOI Listing

Publication Analysis

Top Keywords

patient-specific three-dimensional
8
augmented reality
8
imaging data
8
urologic oncology
8
patient care
8
workflow generate
4
generate patient-specific
4
three-dimensional augmented
4
reality models
4
models medical
4

Similar Publications

Introduction: Cervical foraminotomy is a procedure used to treat patients with radiculopathy. While the procedure can be performed using a minimally invasive technique, achieving complete visualization of relevant anatomy can be challenging. This study explores the use of patient-specific three-dimensional (3D) printed anatomical models, created from advanced medical imaging data, for preoperative planning and intraoperative guidance in cervical foraminotomy by comparing fluoroscopy time, operative time, estimated blood loss volume, and functional improvement.

View Article and Find Full Text PDF

Vascularized bone grafts have been successfully established for complex bone defects. The integration of three-dimensional (3D) simulation and printing technology may aid in more precise surgical planning and intraoperative bone shaping. The purpose of the present study was to describe the implementation and surgical application of this innovative technology for bone reconstruction.

View Article and Find Full Text PDF

: Patient-specific instrumentation (PSI) in total knee arthroplasty (TKA) uses preoperative three-dimensional imaging to create cutting blocks tailored to patient anatomy. However, there is debate regarding the additional benefits of PSI in terms of improved alignment or functional outcomes compared to using conventional instruments. Although PSI design has undergone continuous development, the improvements have not been incorporated.

View Article and Find Full Text PDF

Purpose: Currently, no gold standard exists for 3D analysis of virtually planned surgery accuracy postoperatively. The aim of this study was to present a new, validated and standardised methodology for 3D postoperative assessment of surgical accuracy in patients undergoing 3D virtually planned and guided corrective osteotomies.

Methods: All patients who underwent 3D planned corrective osteotomy in 2021-2022 at our center with a postoperative CT were included.

View Article and Find Full Text PDF

Purpose: The aim of this study was to evaluate the feasibility of using patient-specific implants (PSI) for complex shaft corrective osteotomies in multiplanar deformities of long bones in the lower extremities. Additionally, it aimed to investigate the added value of these implants by quantifying surgical accuracy on postoperative CT, comparing their outcomes to two commonly used techniques: 3D virtual visualizations and 3D-printed surgical guides.

Methods: Six tibial and femoral shaft corrective osteotomies were planned and performed on three Thiel embalmed human specimen.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!