2D metal-organic complex nanosheets with the merits of high stability and structure tunability are an emerging topic in recent years. To extend the promising ultrathin architectures, a new Co(II) complex nanosheet (Co-nanosheet) is designed and prepared a readily operated interface-assisted coordination reaction between the ligand 4,4'',4'''-(2,4,6-trimethylbenzene-1,3,5-triyl)tris(2,2':6',2''-terpyridyl) (L) and Co ions. The as-formed Co(II) complex nanosheet exhibits both a uniform layered structure and good thermostability as proposed, which were verified by various chemical and physical analytical methods. Moreover, it is first utilized as an electroresponsive medium to tune the surface plasmon resonance behavior of Au nanoparticles, expanding the applicable fields of this type of 2D materials.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1dt02780hDOI Listing

Publication Analysis

Top Keywords

complex nanosheet
12
coii complex
8
cobaltii complex
4
nanosheet electroactive
4
electroactive medium
4
medium plasmonic
4
plasmonic switching
4
switching nanoparticles
4
nanoparticles metal-organic
4
metal-organic complex
4

Similar Publications

Lightweight flexible piezoelectric devices have garnered significant interest over the past few decades due to their applications as energy harvesters and wearable sensors. Among different piezoelectrically active polymers, poly(vinylidene fluoride) and its copolymers have attracted considerable attention for energy conversion due to their high flexibility, thermal stability, and biocompatibility. However, the orientation of polymer chains for self-poling under mild conditions is still a challenging task.

View Article and Find Full Text PDF

Homologous metal-organic complexes reconstructed oxy-hydroxide heterostructures as efficient oxygen evolution electrocatalysts.

J Colloid Interface Sci

January 2025

Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 China. Electronic address:

It is imperative to investigate more cost-effective, long-lasting, efficient, and reliable non-noble metal electrocatalysts for the oxygen evolution reaction (OER) in hydrogen production via water splitting. Metal-organic complexes have been extensively researched and utilized for this purpose, yet their transformation in this process remains intriguing and underexplored. To enable a comprehensive comparison, we synthesized three types of metal-organic complexes with varying morphologies using the same raw material.

View Article and Find Full Text PDF

An interface can be delicately designed using interactions between nanoparticles and surfactants by controlling surface properties such as activity and charge equilibrium. This study seeks to provide insights into how surfactant concentration impacts the stability and dynamics of nanoparticle-surfactant interfaces, with potential applications in material science and interface engineering. This study investigates the interactions between Graphene Function (Gr, Graphene function in this text refers to functionalizing the graphene sheets with -COOH groups via acidic reactions.

View Article and Find Full Text PDF

Exceptional CO2 Hydrogenation to Ethanol via Precise Single-Atom Ir Deposition on Functional P Islands.

Angew Chem Int Ed Engl

January 2025

Hong Kong Polytechnic University, Applied Biology and Chemical Technology, 8/F Lee Shau Kee Building, The Hong Kong Polytechnic University, 00000, Hong Kong, HONG KONG.

The thermocatalytic hydrogenation of CO2 to ethanol has attracted significant interest because ethanol offers ease of transport and substantial value in chemical synthesis. Here, we present a state-of-the-art catalyst for the CO2 hydrogenation to ethanol achieved by precisely depositing single-atom Ir species on P cluster islands situated on the In2O3 nanosheets. The Ir1-Px/In2O3 catalyst achieves an impressive ethanol yield of 3.

View Article and Find Full Text PDF

Spontaneous immobilization of single atom in NbCT MXene as excellent nanozyme for detecting and preventing gastric mucosal injury.

Biosens Bioelectron

January 2025

Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China. Electronic address:

Early diagnosis and treatment of gastric mucosal injury is crucial to prevent further gastritis and even canceration. As an efficient biocatalyst, single-atom nanozyme (SAzyme) is proposed to be an ideal candidate for the construction of multifunctional platforms. Nevertheless, SAzyme still faces challenges in detecting and treating diseases due to the complexity of preparation methods, limitations of enzyme activity, and undesirable biocompatibility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!