Despite medical physics becoming a more patient-facing part of the radiation oncology team, medical physics graduate students have no training in patient communication. An introductory patient communication training for medical physics graduate students is presented here. This training exposes participants to foundational concepts and effective communication skills through a lecture and it allows them to apply these concepts through realistic simulated patient interactions. The training was conducted virtually, and eight students participated. The impact of the training was evaluated based on changes in both confidence and competence of the participants' patient communication skills. Participants were asked to fill out a survey to assess their confidence on communicating with patients before and after the training. They also underwent a simulated patient interaction pre- and postlecture. Their performance during these was evaluated by both the simulated patient actors and the participants themselves using a rubric. Each data set was paired and analyzed for significance using a Wilcoxon rank-sum test with an alpha of 0.05. Participants reported significantly higher confidence in their feeling of preparedness to interact with patients (mean = 2.38 vs. 3.88, p = 0.008), comfort interacting independently (mean = 2.00 vs. 4.00, p = 0.002), comfort showing patients they are actively listening (mean = 3.50 vs. 4.50, p = 0.005), and confidence handling challenging patient interactions (mean = 1.88 vs. 3.38, p = 0.01), after the training. Their encounter scores, as evaluated by the simulated patient actors, significantly increased (mean = 77% vs. 91%, p = 0.022). Self-evaluation scores increased, but not significantly (mean = 62% vs. 68%, p = 0.184). The difference between the simulated patient and self-evaluation scores for the postinstruction encounter was statistically significant (p = 0.0014). This patient communication training for medical physics graduate students is effective at increasing both the confidence and the competence of the participants in the subject. We propose that similar trainings be incorporated into medical physics graduate training programs prior to students entering into residency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8803301PMC
http://dx.doi.org/10.1002/acm2.13449DOI Listing

Publication Analysis

Top Keywords

medical physics
24
patient communication
20
physics graduate
20
simulated patient
20
graduate students
16
communication training
12
training medical
12
training
10
patient
10
introductory patient
8

Similar Publications

External delay and dispersion correction of automatically sampled arterial blood with dual flow rates.

Biomed Phys Eng Express

January 2025

Brain Health Imaging Centre, Centre for Addiction and Mental Health, B68-250 College St, Toronto, Ontario, M5T 1R8, CANADA.

Objective: Arterial sampling for PET imaging often involves continuously measuring the radiotracer activity concentration in blood using an automatic blood sampling system (ABSS). We proposed and validated an external delay and dispersion correction procedure needed when a change in flow rate occurs during data acquisition. We also measured the external dispersion constant of [11C]CURB, [18F]FDG, [18F]FEPPA, and [18F]SynVesT-1.

View Article and Find Full Text PDF

Ultrasensitive Detection of Circulating Plasma Cells Using Surface-Enhanced Raman Spectroscopy and Machine Learning for Multiple Myeloma Monitoring.

Anal Chem

January 2025

Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, Fujian 350117, China.

Multiple myeloma is a hematologic malignancy characterized by the proliferation of abnormal plasma cells in the bone marrow. Despite therapeutic advancements, there remains a critical need for reliable, noninvasive methods to monitor multiple myeloma. Circulating plasma cells (CPCs) in peripheral blood are robust and independent prognostic markers, but their detection is challenging due to their low abundance.

View Article and Find Full Text PDF

Purpose: Treatment of peripheral artery disease (PAD) in the region below the knee (BTK) is dissatisfying as failure of treated target lesions (TLF) is frequent and diagnostic imaging is often challenging. In the BTK-region metallic drug-eluting stents (mDES) yielded best results concerning primary patency (PP), but also annihilate signal in magnetic resonance angiography (MR-A). A recently introduced non-metallic drug eluting bioresorbable Tyrocore® vascular scaffold (deBVS), that offers an option for re-treatment of lesions due to its full degradation within 3-4 years after placement, was investigated with respect to its compatibility with MR-A to unimpededly depict previously treated target lesions.

View Article and Find Full Text PDF

Ultraportable (UP) X-ray devices are ideal to use in community-based settings, particularly for chest X-ray (CXR) screening of tuberculosis (TB). Unfortunately, there is insufficient guidance on the radiation safety of these devices. This study aims to determine the radiation dose by UP X-ray devices to both the public and radiographers compared to international dose limits.

View Article and Find Full Text PDF

The time-resolved detection of mid- to far-infrared electric fields absorbed and emitted by molecules is among the most sensitive spectroscopic approaches and has the potential to transform sensing in fields such as security screening, quality control, and medical diagnostics. However, the sensitivity of the standard detection approach, which relies on encoding the far-infrared electric field into amplitude modulation of a visible or near-infrared probe laser pulse, is limited by the shot noise of the latter. This constraint cannot be overcome without using a quantum resource.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!