Monte Carlo simulations were performed to investigate the behavior of the peak to background ratio (P/B) of particles on a substrate as a function of different variables such as take-off angle, tilt angle, particle size, and beam energy. The results showed that the P/B highly depends on the beam energy, the size of particles, and the composition of the substrates. Results showed that the rate of intensity reduction of the peak is less than the background for a high tilt angle (60 degrees), and thereby, the P/B increases at a high tilt angle. It was shown that by increasing the take-off angle, the P/B initially reduces and then reaches a plateau. Results showed that the P/B highly depends on the size of particles. Analyses showed that by moving the electron beam from the center to the side of the particle, the P/B increases. Finally, the spherical particles have higher sensitivity of the P/B to the beam position than the cubical particles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8519717PMC
http://dx.doi.org/10.1155/2021/8070721DOI Listing

Publication Analysis

Top Keywords

tilt angle
16
peak background
12
take-off angle
12
beam energy
12
p/b
8
angle tilt
8
angle particle
8
particle size
8
size beam
8
p/b highly
8

Similar Publications

Purpose: To evaluate the efficacy and complications of simplified graded inferior oblique anterior transposition (IOAT) in treating at least 10 PD vertical deviation in the primary position and inferior oblique muscle overaction (IOOA).

Methods: This retrospective study reviewed the medical records of 65 patients treated with simplified graded IOAT procedures for both vertical deviation and IOOA. Patients were grouped according to vertical deviation in the primary position.

View Article and Find Full Text PDF

Objective: Spinopelvic sagittal balance ensures efficient posture and minimizes energy expenditure by aligning the spine, pelvis, and lower extremities. Deviations can cause clinical issues like back pain and functional limitations. Key radiographic parameters, including pelvic tilt (PT), pelvic incidence (PI), sacral slope (SS), and lumbar lordosis (LL), are essential for evaluating spinal pathologies and planning surgeries.

View Article and Find Full Text PDF

Background: Multiple sclerosis (MS) patients frequently experience gait disturbances, which can be exacerbated in those with vestibular involvement. Various exercise approaches are available to address gait difficulties in this patient population, and the use of vestibular rehabilitation, in particular, has increased recently. However, the effects of this specific exercise approach on gait in MS patients remain unclear.

View Article and Find Full Text PDF

In the field of chiral smectic liquid crystals, orthoconic antiferroelectric liquid crystals (OAFLCs) have attracted the interest of the scientific community due to the very high tilt angle, close to 45°, and the consequent optical properties. In the present study, the first H NMR investigation is reported on two samples, namely 3F5HPhF9 and 3F7HPhF8, showing the phase sequence isotropic-SmC*-SmC* and the phase sequence isotropic-SmA-SmC*-SmC*, respectively, when cooling from the isotropic to the crystalline phases. To this aim, the liquid crystals were doped with a small amount of deuterated probe biphenyl-4,4'-diol-d.

View Article and Find Full Text PDF

In this paper, we studied the sidewall conditions of 28 × 52 µm InGaN-based blue and green micro-LEDs with different sidewall angles and their effects on external quantum efficiency (EQE). Our findings indicate that steeper sidewall mesas can reduce non-radiative recombination and leakage current, which is beneficial for achieving high internal quantum efficiency (IQE). However, as the sidewall angle increases, the light output from the micro-LED tends to concentrate in the internal region, leading to a decrease in light extraction efficiency (LEE).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!