Introduction: Neutrophil extracellular traps (NETs) act as a critical trigger of inflammation and coagulation. We hypothesized that NETs are associated with septic hypercoagulability.
Materials And Methods: In total, 82 patients admitted with sepsis in the Department of Critical Care Medicine of Peking Union Medical College Hospital were enrolled between February 2017 and April 2018. Clinical and hematological parameters and thrombotic or hemorrhagic events were recorded. Blood samples were obtained to assess biomarkers of NET formation, including neutrophil elastase 2 (ELA2) and citrullinated histone H3, and endothelial-derived biomarker syndecan-1. Autophagy levels and their regulation pathway were also examined to explore their interaction with NETs.
Result: Sepsis patients with disseminated intravascular coagulation (DIC) showed significantly higher levels of NET formation [ELA2, 1,247 (86-625) vs. 2,039 (1,544-2,534), p < 0.0001; H3, 140 (47-233) vs. 307 (199-415), p < 0.0001]. NET formation was independently associated with DIC risk [ELA2, OR 1.0028, 95% CI, 1.0010-1.0045; H3, OR 1.0104, 95% CI, 1.0032-1.0176] and mortality [ELA2, HR 1.0014, 95% CI, 1.0004-1.0024; H3, HR 1.0056, 95% CI, 1.0008-1.0115]. The area under the curve value for ELA2 in predicting DIC occurrence was 0.902 (95% CI, 0.816-0.957), and that of H3 was 0.870 (95% CI, 0.778-0.934). Furthermore, biomarkers of NET formation, endothelial cells, and autophagy exhibited a significant correlation [ELA2 and Syn (r = 0.5985, p < 0.0001), LC3B (r = -0.4224, p < 0.0001); H3 and Syn (r = 0.6383, p < 0.0001), LC3B (r = -0.3005, p = 0.0061)].
Conclusion: Increased NET formation is significantly associated with sepsis-induced DIC incidence and mortality in sepsis patients, revealing a significant relationship with the autophagy pathway.
Clinical Trial Registration: chictr.org.cn, identifier ChiCTR-ROC-17010750.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8542927 | PMC |
http://dx.doi.org/10.3389/fimmu.2021.757041 | DOI Listing |
PLoS Comput Biol
January 2025
Electrical and Computer Engineering Department, Concordia University, Montreal, Canada.
Astrocytes critically shape whole-brain structure and function by forming extensive gap junctional networks that intimately and actively interact with neurons. Despite their importance, existing computational models of whole-brain activity ignore the roles of astrocytes while primarily focusing on neurons. Addressing this oversight, we introduce a biophysical neural mass network model, designed to capture the dynamic interplay between astrocytes and neurons via glutamatergic and GABAergic transmission pathways.
View Article and Find Full Text PDFEur J Endocrinol
January 2025
Department of Internal Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany.
Objective: The effects of sex hormones remain largely unexplored in pheochromocytomas and paragangliomas (PPGLs) and gastroenteropancreatic neuroendocrine tumors (GEP-NETs).
Methods: We evaluated the effects of estradiol, progesterone, Dehydroepiandrosterone sulfate (DHEAS), and testosterone on human patient-derived PPGL/GEP-NET primary culture cell viability (n = 38/n = 12), performed next-generation sequencing and immunohistochemical hormone receptor analysis in patient-derived PPGL tumor tissues (n = 36).
Results: In PPGLs, estradiol and progesterone (1 µm) demonstrated overall significant antitumor effects with the strongest efficacy in PPGLs with NF1 (cluster 2) pathogenic variants.
Microsc Microanal
January 2025
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin 14195, Germany.
In catalysis research, the amount of microscopy data acquired when imaging dynamic processes is often too much for nonautomated quantitative analysis. Developing machine learned segmentation models is challenged by the requirement of high-quality annotated training data. We thus substitute expert-annotated data with a physics-based sequential synthetic data model.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
Objectives: Parkinson's disease (PD) is characterized by olfactory dysfunction (OD) and cognitive deficits at its early stages, yet the link between OD and cognitive deficits is also not well-understood. This study aims to examine the changes in the olfactory network associated with OD and their relationship with cognitive function in de novo PD patients.
Methods: A total of 116 drug-naïve PD patients and 51 healthy controls (HCs) were recruited for this study.
ACS Biomater Sci Eng
January 2025
Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, Paris 75252, France.
Although silicon is a widespread constituent in dental materials, its possible influence on the formation and repair of teeth remains largely unexplored. Here, we studied the effect of two silicic acid-releasing nanomaterials, silica and bioglass, on a living model of pulp consisting of dental pulp stem cells seeded in dense type I collagen hydrogels. Silica nanoparticles and released silicic acid had little effect on cell viability and mineralization efficiency but impacted metabolic activity, delayed matrix remodeling, and led to heterogeneous cell distribution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!