Researchers are looking for new methods to integrate sensing capabilities into textiles while maintaining the durability, flexibility, and comfort of the garment. One method for imparting sensing capabilities into garments is through coupling conductive yarns with the radio frequency identification (RFID) technology. These smart devices have exhibited promising results for short-term use. However, long-term studies of their performance are still needed to evaluate their performance over a longer period. Like all garments, wearable sensors are susceptible to environmental factors during use. These factors can lead to dielectric coupling and corrosion of conductive yarns, which has the potential to degrade the performance of the device. This letter analyzes the effect of sweat and moisture on silver-coated nylon yarn by extracting the sheet resistance at 913 MHz from transmission line measurements. HFSS simulation shows the level of perturbation in antenna performance as sheet resistance increased with each cycle of sweat-immersion, washing, and drying.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8547707 | PMC |
http://dx.doi.org/10.1109/lawp.2020.2971189 | DOI Listing |
ACS Macro Lett
January 2025
Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
As three-dimensional (3D) printing has emerged as a new manufacturing technology, the demand for high-performance 3D printable materials has increased to ensure broad applicability in various load-bearing structures. In particular, the thixotropic properties of materials, which allow them to flow under applied external forces but resist flowing otherwise, have been reported to enable rapid and high-resolution printing owing to their self-standing and easily processable characteristics. In this context, graphene nanosheets exhibit unique π-π stacking interactions between neighboring sheets, likely imparting self-standing capability to low-viscosity inks.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Physics, Changwon National University, Changwon 51140, Republic of Korea.
A mechanically robust flexible transparent conductor with high thermal and chemical stability was fabricated from welded silver nanowire networks (w-Ag-NWs) sandwiched between multilayer graphene (MLG) and polyimide (PI) films. By modifying the gas flow dynamics and surface chemistry of the Cu surface during graphene growth, a highly crystalline and uniform MLG film was obtained on the Cu foil, which was then directly coated on the Ag-NW networks to serve as a barrier material. It was found that the highly crystalline layers in the MLG film compensate for structural defects, thus forming a perfect barrier film to shield Ag NWs from oxidation and sulfurization.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
College of Textiles and Garment, Liaodong University, Dandong 118003, China.
The development of functional textiles has become a key focus in recent years, aiming to meet the diverse requirements of modern society. MXene has excellent conductivity, hydrophilicity, and UV resistance, and is widely used in electromagnetic shielding, sensors, energy storage, and photothermal conversion. Tussah silk (TS) is a unique natural textile raw material and has a unique jewelry luster, natural luxury, and a smooth and comfortable feel.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
With the development of diamond technology, its application in the field of electronics has become a new research hotspot. Hydrogen-terminated diamond has the electrical properties of P-type conduction due to the formation of two-dimensional hole gas (2DHG) on its surface. However, due to various scattering mechanisms on the surface, its carrier mobility is limited to 50-200 cm/(Vs).
View Article and Find Full Text PDFThis study developed a novel PbS-rGO composite counter electrode to enhance the performance of quantum dot-sensitized solar cells (QDSSCs). The composite was synthesized a hydrothermal method by anchoring PbS nanocubes onto reduced graphene oxide (rGO) sheets. The effect of the mass ratio of rGO to PbS (0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!