Gram-negative bacterium Neisseria meningitidis, responsible for human infectious disease meningitis, acquires the iron (Fe) ion needed for its survival from human transferrin protein (hTf). For this transport, transferrin binding proteins TbpA and TbpB are facilitated by the bacterium. The transfer cannot occur without TbpA, while the absence of TbpB only slows down the transfer. Thus, understanding the TbpA-hTf binding at the atomic level is crucial for the fight against bacterial meningitis infections. In this study, atomistic level of mechanism for TbpA-hTf binding is elucidated through 100 ns long all-atom classical MD simulations on free (uncomplexed) TbpA. TbpA protein underwent conformational change from 'open' state to 'closed' state, where two loop domains, loops 5 and 8, were very close to each other. This state clearly cannot accommodate hTf in the cleft between these two loops. Moreover, the helix finger domain, which might play a critical role in Fe ion uptake, also shifted downwards leading to unfavorable Tbp-hTf binding. Results of this study indicated that TbpA must switch between 'closed' state to 'open' state, where loops 5 and 8 are far from each other creating a cleft for hTf binding. The atomistic level of understanding to conformational switch is crucial for TbpA-hTf complex inhibition strategies. Drug candidates can be designed to prevent this conformational switch, keeping TbpA locked in 'closed' state.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8517614 | PMC |
http://dx.doi.org/10.3906/kim-2102-25 | DOI Listing |
J Med Internet Res
January 2025
Department of Industrial and Systems Engineering, The University of Florida, GAINESVILLE, FL, United States.
Background: The implementation of large language models (LLMs), such as BART (Bidirectional and Auto-Regressive Transformers) and GPT-4, has revolutionized the extraction of insights from unstructured text. These advancements have expanded into health care, allowing analysis of social media for public health insights. However, the detection of drug discontinuation events (DDEs) remains underexplored.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States.
Hydrogen atom transfer (HAT) reactions and their kinetic barriers Δ are important in organic and inorganic chemistry. This study examines factors that influence Δ, reporting the kinetics and thermodynamics of HAT from various ruthenium bis(acetylacetonate) pyridine-imidazole complexes to nitroxyl radicals. Across these 36 reactions, the Δ and Δ can be independently varied, with different sets of Ru complexes primarily tuning either their ps or their °s.
View Article and Find Full Text PDFISME J
January 2025
Department of Plant Pathology, University of Georgia, Athens, GA, United States.
Pantoea agglomerans is one of four Pantoea species reported in the USA to cause bacterial rot of onion bulbs. However, not all P. agglomerans strains are pathogenic to onion.
View Article and Find Full Text PDFPlant Cell Physiol
January 2025
Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan.
Plants control their stomatal apertures to optimize carbon dioxide uptake and water loss. Stomata open in response to light through the phosphorylation of the penultimate residue, Thr, of plasma membrane (PM) H+-ATPase in guard cells. Stomata close in response to drought and the phytohormone abscisic acid (ABA), and ABA suppresses the light-induced activation of PM H+-ATPase.
View Article and Find Full Text PDFFront Physiol
January 2025
Centre de Recherche de l'Institute Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, QC, Canada.
Introduction: In high-altitude cities located above 2,500 m, hospitals face a concerning mortality rate of over 50% among intensive care unit (ICU) patients with acute respiratory distress syndrome (ARDS). This elevated mortality rate is largely due to the absence of altitude-specific medical protocols that consider the unique physiological adaptations of high-altitude residents to hypoxic conditions. This study addresses this critical gap by analyzing demographic, clinical, sex-specific, and preclinical data from ICUs in Bogotá, Colombia (2,650 m) and El Alto, Bolivia (4,150 m).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!