During biological evolution, plants have developed a wide variety of body plans and concepts that enable them to adapt to changing environmental conditions. The trade-off between flexural and torsional rigidity is an important example of sometimes conflicting mechanical requirements, the adaptation to which can be quantified by the dimensionless twist-to-bend ratio. Our study considers the triangular flower stalk of Carex pendula, which shows the highest twist-to-bend ratios ever measured for herbaceous plant axes. For an in-depth understanding of this peak value, we have developed geometric models reflecting the 2D setting of triangular cross-sections comprised of a parenchymatous matrix with vascular bundles surrounded by an epidermis. We analysed the mathematical models (using finite elements) to measure the effect of either reinforcements of the epidermal tissue or fibre reinforcements such as collenchyma and sclerenchyma on the twist-to-bend ratio. The change from an epidermis to a covering tissue of corky periderm increases both the flexural and the torsional rigidity and decreases the twist-to-bend ratio. Furthermore, additional individual fibre reinforcement strands located in the periphery of the cross-section and embedded in a parenchymatous ground tissue lead to a strong increase of the flexural and a weaker increase of the torsional rigidity and thus resulted in a marked increase of the twist-to-bend ratio. Within the developed model, a reinforcement by 49 sclerenchyma fibre strands or 24 collenchyma fibre strands is optimal in order to achieve high twist-to-bend ratios. Dependent on the mechanical quality of the fibres, the twist-to-bend ratio of collenchyma-reinforced axes is noticeably smaller, with collenchyma having an elastic modulus that is approximately 20 times smaller than that of sclerenchyma. Based on our mathematical models, we can thus draw conclusions regarding the influence of mechanical requirements on the development of plant axis geometry, in particular the placement of reinforcements.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8551206 | PMC |
http://dx.doi.org/10.1038/s41598-021-00569-z | DOI Listing |
J R Soc Interface
June 2022
Department for Applied Mathematics, University of Freiburg, 79104 Freiburg, Germany.
During the evolution of land plants many body plans have been developed. Differences in the cross-sectional geometry and tissue pattern of plant axes influence their flexural rigidity, torsional rigidity and the ratio of both of these rigidities, the so-called twist-to-bend ratio. For comparison, we have designed artificial cross-sections with various cross-sectional geometries and patterns of vascular bundles, collenchyma or sclerenchyma strands, but fixed percentages for these tissues.
View Article and Find Full Text PDFJ Exp Bot
February 2022
Plant Biomechanics Group @ Botanic Garden, University of Freiburg, Freiburg, Germany.
Plants are exposed to various environmental stresses. Leaves immediately respond to mechano-stimulation, such as wind and touch, by bending and twisting or acclimate over a longer time period by thigmomorphogenetic changes of mechanical and geometrical properties. We selected the peltate leaves of Pilea peperomioides for a comparative analysis of mechano-induced effects on morphology, anatomy, and biomechanics of petiole and transition zone.
View Article and Find Full Text PDFFront Plant Sci
November 2021
Plant Biomechanics Group @ Botanic Garden, University of Freiburg, Freiburg, Germany.
From a mechanical viewpoint, petioles of foliage leaves are subject to contradictory mechanical requirements. High flexural rigidity guarantees support of the lamina and low torsional rigidity ensures streamlining of the leaves in wind. This mechanical trade-off between flexural and torsional rigidity is described by the twist-to-bend ratio.
View Article and Find Full Text PDFSci Rep
October 2021
Department of Applied Mathematics, University of Freiburg, Hermann-Herder-Str. 10, 79104, Freiburg, Germany.
During biological evolution, plants have developed a wide variety of body plans and concepts that enable them to adapt to changing environmental conditions. The trade-off between flexural and torsional rigidity is an important example of sometimes conflicting mechanical requirements, the adaptation to which can be quantified by the dimensionless twist-to-bend ratio. Our study considers the triangular flower stalk of Carex pendula, which shows the highest twist-to-bend ratios ever measured for herbaceous plant axes.
View Article and Find Full Text PDFAm J Bot
November 2020
Plant Biomechanics Group, Botanic Garden, Faculty of Biology, University of Freiburg, Germany.
Premise: Because of their own weight and additional wind forces, plants are exposed to various bending and torsional loads that sometimes require contradictory structural characteristics and mechanical properties. The resulting trade-off between flexural and torsional rigidity can be quantified and compared using the dimensionless twist-to-bend ratio.
Methods: The flexural rigidity of the stems of Carex pendula was determined by 2-point bending tests.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!