Chronic kidney disease (CKD) is thus deemed to a global health problem. Renal fibrosis, characterized by accumulation of extracellular matrix (ECM) components in the kidney, is considered a common pathway leading to CKD. Regulator of calcineurin1 (RCAN1), identified as a competitive endogenous inhibitor of the phosphatase calcineurin, participates in ECM deposition in various organs. However, the role of RCAN1 in renal fibrosis remains unclear. Here, unilateral ureteral obstruction (UUO), a well-known model to induce renal fibrosis in vivo, was performed on mice for a week. To overexpress RCAN1.4 in vivo, recombinant adeno-associated virus 9-packed RCAN1.4 over-expression plasm was employed in mice kidney. Lentivirus-packed RCAN1.4 over-expression plasm was employed to transfer into HK-2 and NRK-49F cells in vitro. The results indicated that RCAN1.4 expression was impaired both in UUO-induced renal fibrosis in vivo and TGF-β1-induced renal fibrosis in vitro. However, knocking in of RCAN1.4 suppressed the production of extracellular matrix (ECM) both in vivo and in vitro. Furthermore, in vitro, the apoptosis-related proteins, including the ratio of Bax/Bcl-2 and cleaved-caspase3, were elevated in cells transfected with RCAN1.4 overexpression plasmid. In addition, we found that RCAN1.4 could rugulated NFAT2 nuclear distribution by inhibiting calcineurin pathway. So overexpression of RCAN1.4 could reverse renal fibrosis, attenuate ECM related protein accumulation, promote apoptosis of myofibroblast via inhibiting Calcineurin/NFAT2 signaling pathway. Taken together, our study demonstrated that targeting RCAN1.4 may be therapeutic efficacy in renal fibrosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8551295PMC
http://dx.doi.org/10.1038/s41420-021-00713-8DOI Listing

Publication Analysis

Top Keywords

renal fibrosis
32
rcan14
10
renal
8
fibrosis
8
extracellular matrix
8
matrix ecm
8
fibrosis vivo
8
rcan14 over-expression
8
over-expression plasm
8
plasm employed
8

Similar Publications

Finerenone in Heart Failure-A Novel Therapeutic Approach.

Int J Mol Sci

December 2024

Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, 39106 Magdeburg, Germany.

This review will discuss heart failure, introduce a new drug finerenone, and discuss clinical studies with a focus on its effects on heart failure. Heart failure is a condition or syndrome characterized by an impairment of the pumping ability of the heart, thus no longer keeping up with the demands of the body. There are several types of heart failure; among them are heart failure with reduced ejection fraction, with mildly reduced ejection fraction and with preserved ejection fraction.

View Article and Find Full Text PDF

Sigma-1 Receptor as a Novel Therapeutic Target in Diabetic Kidney Disease.

Int J Mol Sci

December 2024

MTA-SE Lendület "Momentum" Diabetes Research Group, 1083 Budapest, Hungary.

Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease. Current treatments for DKD do not halt renal injury progression, highlighting an urgent need for therapies targeting key disease mechanisms. Our previous studies demonstrated that activating the Sigma-1 receptor (S1R) with fluvoxamine (FLU) protects against acute kidney injury by inhibiting inflammation and ameliorating the effect of hypoxia.

View Article and Find Full Text PDF

Systemic and Cardiac Microvascular Dysfunction in Hypertension.

Int J Mol Sci

December 2024

Dipartimento di Biotecnologie e Scienze della Vita, ASST Sette Laghi, Università degli Studi dell'Insubria, 21100 Varese, Italy.

Hypertension exerts a profound impact on the microcirculation, causing both structural and functional alterations that contribute to systemic and organ-specific vascular damage. The microcirculation, comprising arterioles, capillaries, and venules with diameters smaller than 20 μm, plays a fundamental role in oxygen delivery, nutrient exchange, and maintaining tissue homeostasis. In the context of hypertension, microvascular remodeling and rarefaction result in reduced vessel density and elasticity, increasing vascular resistance and driving end-organ damage.

View Article and Find Full Text PDF

Metal-Dependent Cell Death in Renal Fibrosis: Now and in the Future.

Int J Mol Sci

December 2024

Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China.

Renal fibrosis is a common final pathway underlying nearly almost all progressive kidney diseases. Metal ions are essential trace elements in organisms and are involved in important physiological activities. However, aberrations in intracellular metal ion metabolism may disrupt homeostasis, causing cell death and increasing susceptibility to various diseases.

View Article and Find Full Text PDF

: Extracellular volume (ECV) analysis using computed tomography is recognized as a potential method for diagnostic application. It is currently the only noninvasive method for quantitatively evaluating myocardial fibrosis in dialysis patients for whom gadolinium contrast agents are contraindicated. In this study, we assessed the utility of ECV measurement via CT in the left ventricular (LV) myocardium (LVM) to predict major adverse cardiac events (MACEs) in dialysis patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!