Electrolytic-reduction ion water induces ceramide synthesis in human skin keratinocytes.

Drug Discov Ther

A.I.System Products Corp., Kasugai City, Aichi, Japan.

Published: November 2021

Ceramides play a critical role in the skin barrier. We previously demonstrated that electrolytic-reduction ion water (ERI) improves skin integrity and enhances the protective barrier function of the epidermis. Here, we first examine the effect of ERI on the expression of ceramide synthesis-related enzymes in human skin keratinocytes. The expression of enzymes involved in the elongation of very-long-chain fatty acids protein 4 (ELOVL4) was increased after treatment with ERI-containing media. The expression of ceramide synthase 3 (CerS3), which binds ultra-long-chain fatty acids to sphingosine to produce ceramides found in the skin, was also increased. Subsequently, we examined the expression of ceramides in keratinocytes treated with ERI using thin-layer chromatography. The results showed that ERI increased the ceramide content, and these ceramides were more hydrophobic than those extracted from untreated keratinocytes. These results suggest that ERI enhances the expression of enzymes involved in the synthesis of ceramides containing ultra-long-chain fatty acid residues, which have a protective function in the skin.

Download full-text PDF

Source
http://dx.doi.org/10.5582/ddt.2021.01091DOI Listing

Publication Analysis

Top Keywords

electrolytic-reduction ion
8
ion water
8
human skin
8
skin keratinocytes
8
expression ceramide
8
expression enzymes
8
enzymes involved
8
fatty acids
8
ultra-long-chain fatty
8
skin
6

Similar Publications

Skin exposed to ultraviolet light produces hydrogen peroxide (HO) and reactive oxygen species (ROS) that cause protein denaturation and other disorders. We investigated whether electrolytic-reduction ion water (ERI), which has reducing properties and has been reported to protect skin, exhibits antioxidant activity in skin keratinocytes. The antioxidant activity of ERI was first examined using DPPH assay and Electron Spin Resonance to test for radicals, and using the Amplex Red method to test for HO.

View Article and Find Full Text PDF

The electrolytic reduction of CO in aqueous media promises a pathway for the utilization of the green house gas by converting it to base chemicals or building blocks thereof. However, the technology is currently not economically feasible, where one reason lies in insufficient reaction rates and selectivities. Current research of CO electrolysis is becoming aware of the importance of the local environment and reactions at the electrodes and their proximity, which can be only assessed under true catalytic conditions, i.

View Article and Find Full Text PDF

Electrolytic Recovery of Metal Cobalt from Waste Catalyst Pickling Solution.

Materials (Basel)

September 2022

Department of Mechanical Engineering and Advanced Institute of Manufacturing with High-tech Innovations, National Chung Cheng University, Minhsiung Township, Chiayi 621301, Taiwan.

Terephthalic acid production plant uses liquid cobalt-manganese bromide as a catalyst. The waste catalyst is burned with exhaust gas and accumulated in fly ash, which is further pickled and impregnated with a sulfuric acid solution. The resultant solution is rich in cobalt and manganese metal ions with few metal impurities from other petroleum raw materials.

View Article and Find Full Text PDF

The detergency of special electrolytic-reduction ion water (S-100) was evaluated in comparison with typical synthetic surfactants. Furthermore, to examine the cleaning mechanism of S-100, various physicochemical characteristics of S-100 were measured and a comprehensive evaluation of cleaning was performed. S-100 (10%) had a detergency comparable to that of various surfactants, such as sodium dodecyl sulfate and sodium dodecyl benzene sulfonate, which are generally blended or mixed in residential detergents.

View Article and Find Full Text PDF

Ceramides play a critical role in the skin barrier. We previously demonstrated that electrolytic-reduction ion water (ERI) improves skin integrity and enhances the protective barrier function of the epidermis. Here, we first examine the effect of ERI on the expression of ceramide synthesis-related enzymes in human skin keratinocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!