AI Article Synopsis

  • Immune checkpoint inhibition therapy has shown promise for improving outcomes in advanced non-small cell lung cancer, but there's a need for better predictive biomarkers; a blood test called host immune classifier (HIC) was evaluated for this purpose in a real-world study.* -
  • The INSIGHT study enrolled over 3,570 NSCLC patients and assessed their survival based on HIC designation (HIC-H or HIC-C) and treatment type, revealing that HIC-H patients had significantly longer overall survival compared to HIC-C patients across various treatment regimens, including ICI therapies.* -
  • The findings indicate that HIC testing can independently predict patient survival outcomes regardless of the programmed death ligand 1 (PD-L1)

Article Abstract

Purpose: Immune checkpoint inhibition (ICI) therapy has improved patient outcomes in advanced non-small cell lung cancer (NSCLC), but better biomarkers are needed. A clinically validated, blood-based proteomic test, or host immune classifier (HIC), was assessed for its ability to predict ICI therapy outcomes in this real-world, prospectively designed, observational study.

Materials And Methods: The prospectively designed, observational registry study INSIGHT (Clinical Effectiveness Assessment of VeriStrat® Testing and Validation of Immunotherapy Tests in NSCLC Subjects) (NCT03289780) includes 35 US sites having enrolled over 3570 NSCLC patients at any stage and line of therapy. After enrolment and prior to therapy initiation, all patients are tested and designated HIC-Hot (HIC-H) or HIC-Cold (HIC-C). A prespecified interim analysis was performed after 1-year follow-up with the first 2000 enrolled patients. We report the overall survival (OS) of patients with advanced stage (IIIB and IV) NSCLC treated in the first-line (ICI-containing therapies n=284; all first-line therapies n=877), by treatment type and in HIC-defined subgroups.

Results: OS for HIC-H patients was longer than OS for HIC-C patients across treatment regimens, including ICI. For patients treated with all ICI regimens, median OS was not reached (95% CI 15.4 to undefined months) for HIC-H (n=196) vs 5.0 months (95% CI 2.9 to 6.4) for HIC-C patients (n=88); HR=0.38 (95% CI 0.27 to 0.53), p<0.0001. For ICI monotherapy, OS was 16.8 vs 2.8 months (HR=0.36 (95% CI 0.22 to 0.58), p<0.0001) and for ICI with chemotherapy OS was unreached vs 6.4 months (HR=0.41 (95% CI 0.26 to 0.67), p=0.0003). HIC results were independent of programmed death ligand 1 (PD-L1). In a subgroup with PD-L1 ≥50% and performance status 0-1, HIC stratified survival significantly for ICI monotherapy but not ICI with chemotherapy.

Conclusion: Blood-based HIC proteomic testing provides clinically meaningful information for immunotherapy treatment decision in NSCLC independent of PD-L1. The data suggest that HIC-C patients should not be treated with ICI alone regardless of their PD-L1 expression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8552188PMC
http://dx.doi.org/10.1136/jitc-2021-002989DOI Listing

Publication Analysis

Top Keywords

blood-based proteomic
8
advanced stage
8
non-small cell
8
cell lung
8
lung cancer
8
ici therapy
8
prospectively designed
8
designed observational
8
patients
8
hic-c patients
8

Similar Publications

Assessing the risk of TB progression: Advances in blood-based biomarker research.

Microbiol Res

December 2024

Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen 518000, China. Electronic address:

This review addresses the significant advancements in the identification of blood-based prognostic biomarkers for tuberculosis (TB), highlighting the importance of early detection to prevent disease progression. The manuscript discusses various biomarker categories, including transcriptomic, proteomic, metabolomic, immune cell-based, cytokine-based, and antibody response-based markers, emphasizing their potential in predicting TB incidence. Despite promising results, practical application is hindered by high costs, technical complexities, and the need for extensive validation across diverse populations.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Emory University, Atlanta, GA, USA.

Background: There is currently an unmet need for novel accessible biomarkers that capture the complex and heterogenous pathophysiology of Alzheimer's disease (AD). Over the past decade, the systems-based multi-omic approaches employed by the Accelerating Medicines Partnership in AD (AMP-AD) have resulted in the identification of promising peripheral markers of disease heterogeneity. This scientific review will highlight these advances with a particular focus on the consortium's successes in peripheral protein biomarker discovery in cerebrospinal fluid (CSF) and plasma.

View Article and Find Full Text PDF

Background: Despite being the most common cause of dementia worldwide, the mechanisms underlying the progression of Alzheimer's disease (AD) are not clear and effective treatments are still needed. Hence, further investigation regarding the pathogenesis of AD is required, which might allow for a better understanding of the disease, as well as for an early diagnosis of AD, thus improving the clinical management of AD patients. Here, to identify key proteins in AD pathogenesis, we performed two proteomics strategies, TMT (Tandem Mass Tags) 10-plex quantitative proteomics and LFQ (Label Free Quantification).

View Article and Find Full Text PDF

Early detection of pancreatic ductal adenocarcinoma (PDAC) can improve survival but is hampered by the absence of early disease symptoms. Imaging remains key for surveillance but is cumbersome and may lack sensitivity to detect small tumors. CA19-9, the only FDA-approved blood biomarker for PDAC, is insufficiently sensitive and specific to be recommended for surveillance.

View Article and Find Full Text PDF

Background: Rapid diagnosis of stroke and its subtypes is critical in early stages. We aimed to discover and validate blood-based protein biomarkers to differentiate ischemic stroke (IS) from intracerebral haemorrhage (ICH) using high-throughput proteomics.

Methods: We collected serum samples within 24 h from acute stroke (IS & ICH) and mimics patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!