Tuberculous meningitis (TBM) is an incurable disease with high mortality. It is an extrapulmonary tuberculosis caused by mycobacterium tuberculosis which penetrated the blood-brain barrier and infected the meninges. Mycobacterium tuberculosis lurking in the body mainly reside in macrophages. Anti-tuberculous drugs usually can not target the blood-brain barrier and macrophages, the drug concentration in the lesion is low, which cannot effectively kill mycobacterium tuberculosis, making TBM difficult to treat. Targeted drug delivery systems can target drugs to specific nidus. In the study, we constructed a drug delivery system, which was a cell penetrate peptide B6 and phosphatidylserine (PS) modified polyethylene glycol (PEG) nanomaterial to target the blood-brain barrier and to target macrophages. This nanomaterial was a combined anti-tuberculosis drug delivery system encapsulating antituberculosis drugs rifampicin and pyrazinamide, designed to target macrophages in the brain and kill mycobacterium tuberculosis lurking in the macrophages. We have physically characterized the drug delivery system, and verified the bactericidal ability at cellular and animal level. Results have shown that the targeted drug delivery system had a remarkable efficacy to treat TBM in mice.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jbn.2021.3169DOI Listing

Publication Analysis

Top Keywords

drug delivery
24
delivery system
20
mycobacterium tuberculosis
16
blood-brain barrier
12
combined anti-tuberculosis
8
anti-tuberculosis drug
8
tuberculous meningitis
8
tuberculosis lurking
8
target blood-brain
8
kill mycobacterium
8

Similar Publications

With the rapid development of nanotechnology, nanoultrasonography has emerged as a promising medical imaging technique that demonstrates significant potential in the diagnosis and treatment of gastrointestinal (GI) diseases. This review discusses the applications of nanoultrasonography in the gastrointestinal field, including improvements in imaging resolution, diagnostic accuracy, latest research findings, and prospects for clinical application. By analyzing existing literature, we explore the role of nanoultrasonography in enhancing imaging resolution, enabling targeted drug delivery, and improving therapeutic outcomes, thereby providing a reference for future research directions.

View Article and Find Full Text PDF

Unfolded protein responses in T cell immunity.

Front Immunol

January 2025

Shanghai Frontiers Science Center for Drug Target Identification and Delivery, and the Engineering Research Center of Cell and Therapeutic Antibody of the Ministry of Education, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China.

Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) are integral to T cell biology, influencing immune responses and associated diseases. This review explores the interplay between the UPR and T cell immunity, highlighting the role of these cellular processes in T cell activation, differentiation, and function. The UPR, mediated by IRE1, PERK, and ATF6, is crucial for maintaining ER homeostasis and supporting T cell survival under stress.

View Article and Find Full Text PDF

Artificial molecular motors in biological applications.

Front Mol Biosci

January 2025

Key Laboratory of Thyroid Disease, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.

Molecular motors are the cornerstone for the maintenance of living systems and mediate almost all fundamental processes involved in cellular trafficking. The intricate mechanisms underlying natural molecular motors have been elucidated in detail, inspiring researchers in various fields to construct artificial systems with multi-domain applications. This review summarises the characteristics of molecular motors, biomimetic approaches for their design and operation, and recent biological applications.

View Article and Find Full Text PDF

Introduction: The mortality rate for liver cancer is extremely high but clinical treatments have not made much progress, so it is necessary to develop anticancer agents with lower toxicities and more effective liver-targeting drug delivery systems (LTDDSs). At present, LTDDSs mediated by the asialoglycoprotein receptor (ASGPR) show excellent effects at improving the liver-targeting and antitumor effects of drugs. However, the galactosyl ligands are typically prepared by chemical synthesis and have some shortcomings.

View Article and Find Full Text PDF

Background: The application of nanomedicine in inflammatory bowel disease (IBD) has gained significant attention in the recent years. As the field rapidly evolves, analyzing research trends and identifying research hotpots are essential for guiding future advancements, and a comprehensive bibliometric can provide valuable insights.

Methods: The current research focused on publications from 2001 to 2024, and was sourced from the Web of Science Core Collection (WoSCC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!