Background: During autophagy defense against invading microbes, certain lipid types are indispensable for generating specialized membrane-bound organelles. The lipid composition of autophagosomes remains obscure, as does the issue of how specific lipids and lipid-associated enzymes participate in autophagosome formation and maturation. Helicobacter pylori is auxotrophic for cholesterol and converts cholesterol to cholesteryl glucoside derivatives, including cholesteryl 6'-O-acyl-α-D-glucoside (CAG). We investigated how CAG and its biosynthetic acyltransferase assist H. pylori to escape host-cell autophagy.

Methods: We applied a metabolite-tagging method to obtain fluorophore-containing cholesteryl glucosides that were utilized to understand their intracellular locations. H. pylori 26695 and a cholesteryl glucosyltransferase (CGT)-deletion mutant (ΔCGT) were used as the standard strain and the negative control that contains no cholesterol-derived metabolites, respectively. Bacterial internalization and several autophagy-related assays were conducted to unravel the possible mechanism that H. pylori develops to hijack the host-cell autophagy response. Subcellular fractions of H. pylori-infected AGS cells were obtained and measured for the acyltransferase activity.

Results: The imaging studies of fluorophore-labeled cholesteryl glucosides pinpointed their intracellular localization in AGS cells. The result indicated that CAG enhances the internalization of H. pylori in AGS cells. Particularly, CAG, instead of CG and CPG, is able to augment the autophagy response induced by H. pylori. How CAG participates in the autophagy process is multifaceted. CAG was found to intervene in the degradation of autophagosomes and reduce lysosomal biogenesis, supporting the idea that intracellular H. pylori is harbored by autophago-lysosomes in favor of the bacterial survival. Furthermore, we performed the enzyme activity assay of subcellular fractions of H. pylori-infected AGS cells. The analysis showed that the acyltransferase is mainly distributed in autophago-lysosomal compartments.

Conclusions: Our results support the idea that the acyltransferase is mainly distributed in the subcellular compartment consisting of autophagosomes, late endosomes, and lysosomes, in which the acidic environment is beneficial for the maximal acyltransferase activity. The resulting elevated level of CAG can facilitate bacterial internalization, interfere with the autophagy flux, and causes reduced lysosomal biogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8549234PMC
http://dx.doi.org/10.1186/s12929-021-00768-wDOI Listing

Publication Analysis

Top Keywords

ags cells
16
pylori
8
helicobacter pylori
8
cholesteryl glucosides
8
bacterial internalization
8
autophagy response
8
subcellular fractions
8
fractions pylori-infected
8
pylori-infected ags
8
lysosomal biogenesis
8

Similar Publications

Gastric cancer (GC) is a malignant tumor with high morbidity and mortality rates worldwide. This study aimed to investigate the effects and mechanisms of action of didymin, a dietary flavonoid glycoside, on GC treatment. Human GC cell lines Hs-746T and AGS were used to assess the effects of didymin on cell viability, cell proliferation, and cell cycle.

View Article and Find Full Text PDF

Chemotherapy is an effective treatment for gastric cancer. However, many patients develop resistance to chemotherapeutic agents during clinical treatment. LncRNA CCAT1 has recently been shown to influence cellular resistance to specific chemotherapeutic drugs, but its role in gastric cancer remains underexplored.

View Article and Find Full Text PDF

Maraviroc/cisplatin combination inhibits gastric cancer tumoroid growth and improves mice survival.

Biol Res

January 2025

Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile.

Background: Gastric cancer (GC) is a significant cancer-related cause of death worldwide. GC's most used chemotherapeutic regimen is based on platinum drugs such as cisplatin (CDDP). However, CDDP chemoresistance reduces the survival rate of advanced GC.

View Article and Find Full Text PDF

Objective: To investigate the role of heparan sulfate 6-O-sulfotransferase 2 (HS6ST2) in gastric cancer (GC).

Methods: HS6ST2 expression in GC and adjacent normal gastric mucosa was first detected via immunohistochemical (IHC) staining. The correlation between the expression level of HS6ST2 and clinicopathological parameters were observed.

View Article and Find Full Text PDF

Multidrug resistant bacteria are causing health problems and economic burden worldwide; alternative treatment options such as natural products and nanoparticles have attained great attention recently. Therefore, we aimed to determine the phytochemicals, antibacterial potential, and anticancer activity of W. unigemmata.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!