In the field of bioethics, scientific articles have already been published, and have highlighted relatively pluralist reflections concerning the creation and use of organoids. This plurality, rather than simply reflecting the complexity of the subject, may also be a consequence of the multiple theoretical and practical frameworks applied. Moreover, the creation and use of organoids in biomedical research and healthcare is probably in its infancy. This phenomenon is likely to increase in amplitude. Bioethics may be able to provide it with an effective and pertinent moral meaning, provided that a veritable metabioethical reflection is developed in parallel, that is, a reflection on bioethics itself, to provide scientists and clinicians with the best possible assistance in their everyday practice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8555554 | PMC |
http://dx.doi.org/10.1080/19336918.2021.1996749 | DOI Listing |
Methods Mol Biol
January 2025
Centre for Developmental Neurobiology, King's College London, London, UK.
The choroid plexus (ChP) is a vital brain structure that produces cerebrospinal fluid (CSF) and forms a selective barrier between the blood and CSF, essential for brain homeostasis. Composed of secretory epithelial cells, connective stroma, and a fenestrated vascular network, the ChP supports nutrient transport, immune surveillance, and the clearance of toxic by-products. Despite its significance in maintaining cerebral function, the mechanisms underlying its development and maturation remain poorly understood.
View Article and Find Full Text PDFEndosc Ultrasound
December 2024
Center of Excellence for Stem Cell and Cell Therapy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
Introduction: EUS-guided fine-needle organoid creation (EUS-FNO) from pancreatic cancer (PC) has been increasingly important for precision medicine. The cost for pancreatic organoid creation is substantial and close to 2000 USD/specimen in our institution, and the specimen has to be processed immediately after tissue acquisition so the more passes and specimens, the higher cost of organoid creation will incur. To date, no prospective comparison trial has answered how many needle passes of EUS-FNO needed for a successful organoid creation.
View Article and Find Full Text PDFBiomolecules
December 2024
Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jablonna, Poland.
'Organ-on-a-chip' technology is a promising and rapidly evolving model in biological research. This innovative microfluidic cell culture device was created using a microchip with continuously perfused chambers, populated by living cells arranged to replicate physiological processes at the tissue and organ levels. By consolidating multicellular structures, tissue-tissue interfaces, and physicochemical microenvironments, these microchips can replicate key organ functions.
View Article and Find Full Text PDFCancer Sci
December 2024
Department of Molecular Oncology, Graduate School of Medicine, Osaka University, Osaka, Japan.
Patient-derived organoids represent a novel platform to recapitulate the cancer cells in the patient tissue. While cancer heterogeneity has been extensively studied by a number of omics approaches, little is known about the spatiotemporal kinase activity dynamics. Here we applied a live imaging approach to organoids derived from 10 pancreatic ductal adenocarcinoma (PDAC) patients to comprehensively understand their heterogeneous growth potential and drug responses.
View Article and Find Full Text PDFClin Mol Hepatol
December 2024
Department of Surgery, Hanyang University College of Medicine, Seoul 04763, Republic of Korea.
The creation of self-organizing liver organoids represents a significant, although modest, step toward addressing the ongoing organ shortage crisis in allogeneic liver transplantation. However, researchers have recognized that achieving a fully functional whole liver remains a distant goal, and the original ambition of organoid-based liver generation has been temporarily put on hold. Instead, liver organoids have revolutionized the field of hepatology, extending their influence into various domains of precision and molecular medicine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!