Machine learning models in the prediction of drug metabolism: challenges and future perspectives.

Expert Opin Drug Metab Toxicol

Department of Computer Science, Rice University, Houston, TX, USA.

Published: November 2021

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8759823PMC
http://dx.doi.org/10.1080/17425255.2021.1998454DOI Listing

Publication Analysis

Top Keywords

machine learning
4
learning models
4
models prediction
4
prediction drug
4
drug metabolism
4
metabolism challenges
4
challenges future
4
future perspectives
4
machine
1
models
1

Similar Publications

Prenatal stress has a well-established link to negative biobehavioral outcomes in young children, particularly for girls, but the specific timing during gestation of these associations remains unknown. In the current study, we examined differential effects of timing of prenatal stress on two infant biobehavioral outcomes [i.e.

View Article and Find Full Text PDF

The rise in popularity of two-photon polymerization (TPP) as an additive manufacturing technique has impacted many areas of science and engineering, particularly those related to biomedical applications. Compared with other fabrication methods used for biomedical applications, TPP offers 3D, nanometer-scale fabrication dexterity (free-form). Moreover, the existence of turnkey commercial systems has increased accessibility.

View Article and Find Full Text PDF

Designer Organs: Ethical Genetic Modifications in the Era of Machine Perfusion.

Annu Rev Biomed Eng

January 2025

1Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA;

Gene therapy is a rapidly developing field, finally yielding clinical benefits. Genetic engineering of organs for transplantation may soon be an option, thanks to convergence with another breakthrough technology, ex vivo machine perfusion (EVMP). EVMP allows access to the functioning organ for genetic manipulation prior to transplant.

View Article and Find Full Text PDF

Background: Skin cancers, including melanoma and keratinocyte cancers, are among the most common cancers worldwide, and their incidence is rising in most populations. Earlier detection of skin cancer leads to better outcomes for patients. Artificial intelligence (AI) technologies have been applied to skin cancer diagnosis, but many technologies lack clinical evidence and/or the appropriate regulatory approvals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!