Rapamycin targets STAT3 and impacts c-Myc to suppress tumor growth.

Cell Chem Biol

Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China. Electronic address:

Published: March 2022

Rapamycin is widely recognized as an inhibitor of mTOR, and has been approved for clinical use as an immunosuppressant. Its potencies in anti-cancer, anti-aging, and neurodegenerative diseases are emergingly established. The exploration of other targets of rapamycin will further elucidate its underlying mechanisms of action. In this study, we use a chemical proteomics strategy that has identified STAT3, a transcription factor considered to be undruggable, as a direct functional protein target of rapamycin. Together with other multi-dimensional proteomics data, we show that rapamycin treatment in cell culture significantly inhibits c-Myc-regulated gene expression. Furthermore, we show that rapamycin suppresses tumor growth along with a decreased expression of STAT3 and c-Myc in an in vivo xenograft mouse model for hepatocellular carcinoma. Our data suggest that rapamycin acts directly on STAT3 to decrease its transcription activity, providing important information for the pharmacological and pharmaceutical development of STAT3 inhibitors for cancer therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chembiol.2021.10.006DOI Listing

Publication Analysis

Top Keywords

tumor growth
8
data rapamycin
8
rapamycin
7
stat3
5
rapamycin targets
4
targets stat3
4
stat3 impacts
4
impacts c-myc
4
c-myc suppress
4
suppress tumor
4

Similar Publications

Proto-oncogene KRAS, GTPase (KRAS) is one of the most intensively studied oncogenes in cancer research. Although several mouse models allow for regulated expression of mutant KRAS, selective isolation and analysis of transforming or tumor cells that produce the KRAS oncogene remains a challenge. In our study, we present a knock-in model of oncogenic variant KRAS that enables the "activation" of KRAS expression together with production of red fluorescent protein tdTomato.

View Article and Find Full Text PDF

The transmembrane glycoproteins Trop-1/EpCAM and Trop-2 independently trigger Ca and kinase signals for cell growth and tumor progression. Our findings indicated that Trop-1 and Trop-2 tightly colocalize at macroscopic, ruffle-like protrusions (RLP), that elevate from the cell perimeter, and locally recur over hundreds of seconds. These previously unrecognized elevated membrane regions ≥20 µm-long, up to 1.

View Article and Find Full Text PDF

Transferrin Modified Gold Nanoclusters-Based Biosensing Nanoplatform for High-Precision Multimodal Bioimaging of Tumor Cells.

Anal Chem

January 2025

Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.

Bioimaging technology has been broadly used in biomedicine, and the growth of multimodal imaging technology based on synergistic advantages can overcome the shortcomings of traditional single-modal bioimaging methods and attain high specificity and sensitivity in the fields of bioimaging and biosensing. The analysis of low-abundance microRNAs (miRNAs) in complex organisms is of high importance for early-stage diagnosis and clinical treatment of tumors. In our current study, a biosensing nanoplatform based on Tf-AuNCs and MnO nanosheets was developed for multimodal imaging of tumor cells.

View Article and Find Full Text PDF

Background: Long non-coding RNAs (lncRNAs) are major research factors in a variety of diseases, and lncRNA OIP5-AS1 (OIP5-AS1) was shown to mediate the progression of various tumors. This paper discusses how OIP5-AS1 could potentially be used for diagnosing and prognosticating cholangiocarcinoma (CHOL).

Methods: The ENROCI project evaluated the OIP5-AS1 expression in CHOL samples and confirmed it using RT-qPCR.

View Article and Find Full Text PDF

Background: Growth hormone-secreting pituitary adenomas (GHPA) display diverse biological behaviors and clinical outcomes, necessitating the identification of tumor heterogeneity and prognostically relevant markers.

Methods: In this study, we performed single-cell RNA sequencing (scRNA-seq) on 10 GHPA samples, four of which also underwent spatial transcriptome sequencing, and used scRNA-seq data from four normal pituitary samples as controls. Cell subtype characterization in GHPA was analyzed using multiple algorithms to identify malignant bias regulators, which were then validated using a clinical cohort.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!