Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We report a dramatic reduction of operation voltage of a CuO nanowire-based ionization gas sensor due to the crystalline-to-amorphous phase transformation. The structural change is attributed to the ion bombardment and heating effect during the initial discharge, which brings about the formation of abundant nanocrystallites and surface states favoring gaseous ionization. The gas-sensing properties of the CuO nanowire sensor are confirmed by differentiating various types or concentrations of volatile organic compounds diluted in nitrogen, with a low detection limit at the ppm level. Moreover, a sensing mechanism is proposed on the basis of charge redistribution by electron-gas collision related to the specific ionization energy. The insightful study of the electrode microstructure delivers an exploratory investigation to the effect of gas ionization toward the discharge system, which provides new approaches to develop advanced ionization gas sensors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acssensors.1c01638 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!