Chiral polyheterocycles are one of the most frequently encountered scaffolds in natural products and in current drugs repertoire. A carbohydrate-based diversity oriented synthetic (DOS) approach has been employed for gaining access to many structurally diverse and stereochemically complex rigid polyheterocyclic molecules with multiple chiral hydroxyl groups to enhance aqueous solubility. Inexpensive chiral pool of D-Glucose has been judiciously exploited to get access of complex chiral polyheterocyclic structures using inexpensive, common achiral reagents and domino-Knoevenagel hetero-Diels-Alder (DKHDA) reaction as one of the key synthetic tools. Stereochemistry of newly generated stereocenters of polycyclic structures are unambiguously determined through NMR and X-ray crystallographic study. A chemoinformatic comparison (PCA and PMI) with 40 branded blockbuster drugs showed that newly generated polyheterocycles have good three-dimensional scaffold diversity and most of these pass the Lipinski filter of drug-likeness.

Download full-text PDF

Source
http://dx.doi.org/10.1002/asia.202101123DOI Listing

Publication Analysis

Top Keywords

stereochemically complex
8
complex chiral
8
chiral polyheterocycles
8
newly generated
8
chiral
5
carbohydrate-based synthetic
4
synthetic approach
4
approach diverse
4
diverse structurally
4
structurally stereochemically
4

Similar Publications

Potent HIV‑1 protease inhibitors containing oxabicyclo octanol-derived P2-ligands: Design, synthesis, and X‑ray structural studies of inhibitor-HIV-1 protease complexes.

Bioorg Med Chem Lett

January 2025

Department of Infectious Diseases, Kumamoto University School of Medicine, Kumamoto 860-8556, Japan; Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.

We describe here the design, synthesis, and X-ray structural studies of a new class of HIV-1 protease inhibitors containing 8-oxabicyclo[3.2.1]octanol-derived P2 ligands.

View Article and Find Full Text PDF

Reactivity of Anomalous Aziridines for Versatile Access to High Fsp Amine Chemical Space.

Acc Chem Res

January 2025

Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States.

ConspectusThe manipulation of strained rings is a powerful strategy for accessing the valuable chemical frameworks present in natural products and active pharmaceutical ingredients. Aziridines, the smallest N-containing heterocycles, have long served as building blocks for constructing more complex amine-containing scaffolds. Traditionally, the reactivity of typical aziridines has been focused on ring-opening by nucleophiles or the formation of 1,3-dipoles.

View Article and Find Full Text PDF

Chiral allylamines are important structural components in natural products, pharmaceuticals, and chiral catalysts. Herein, we report a cobalt-catalyzed enantioselective reductive coupling of imines with internal alkynes to synthesize chiral allylamines. The reaction is catalyzed by a cobalt complex derived from commercially available bisphosphine ligand utilizing zinc as the electron donor.

View Article and Find Full Text PDF

Total Synthesis of Kasugamycin.

Org Lett

January 2025

Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China.

We present an efficient synthetic pathway for kasugamycin, an aminoglycoside antibiotic, utilizing naturally derived carbohydrates as starting materials. This synthesis effectively addresses stereochemical complexities by employing the selective reduction of d-fucal, which generates a crucial 3-deoxyglycal intermediate. This intermediate facilitates the introduction of amino groups at the C-2 and C-4 positions, which is essential for the synthesis of kasugamine.

View Article and Find Full Text PDF

Lactoperoxidase (LPO) is a heme-containing mammalian enzyme that is found in the extracellular fluids of animals including plasma, saliva, airway epithelial and nasal lining fluids, milk, tears, and gastric juices. LPO uses hydrogen peroxide (HO) to convert substrates into oxidized products. Previous structural studies have shown that HO, CO, and CN are bound to LPO at the distal heme cavity by coordinating with heme iron.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!