A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Beneficial worm allies warn plants of parasite attack below-ground and reduce above-ground herbivore preference and performance. | LitMetric

Antagonistic interactions among different functional guilds of nematodes have been recognized for quite some time, but the underlying explanatory mechanisms are unclear. We investigated responses of tomato (Solanum lycopersicum) to two functional guilds of nematodes-plant parasite (Meloidogyne javanica) and entomopathogens (Heterorhabditis bacteriophora, Steinernema feltiae below-ground, and S. carpocapsae)-as well as a leaf mining insect (Tuta absoluta) above-ground. Our results indicate that entomopathogenic nematodes (EPNs): (1) reduced root knot nematode (RKN) infestation below-ground, (2) reduced herbivore (T. absoluta) host preference and performance above-ground, and (3) induced overlapping plant defence responses by rapidly activating polyphenol oxidase and guaiacol peroxidase activity in roots, but simultaneously suppressing this activity in above-ground tissues. Concurrently, we investigated potential plant signalling mechanisms underlying these interactions using transcriptome analyses. We found that both entomopathogens and plant parasites triggered immune responses in plant roots with shared gene expression. Secondary metabolite transcripts induced in response to the two nematode functional guilds were generally overlapping and showed an analogous profile of regulation. Likewise, we show that EPNs modulate plant defence against RKN invasion, in part, by suppressing active expression of antioxidant enzymes. Inoculations of roots with EPN triggered an immune response in tomato via upregulated phenylpropanoid metabolism and synthesis of protease inhibitors in plant tissues, which may explain decreased egg laying and developmental performance exhibited by herbivores on EPN-inoculated plants. Furthermore, changes induced in the volatile organic compound-related transcriptome indicated that M. javanica and/or S. carpocapsae inoculation of plants triggered both direct and indirect defences. Our results support the hypothesis that plants "mistake" subterranean EPNs for parasites, and these otherwise beneficial worms activate a battery of plant defences associated with systemic acquired resistance and/or induced systemic resistance with concomitant antagonistic effects on temporally co-occurring subterranean plant pathogenic nematodes and terrestrial herbivores.

Download full-text PDF

Source
http://dx.doi.org/10.1111/mec.16254DOI Listing

Publication Analysis

Top Keywords

functional guilds
12
preference performance
8
plant
8
plant defence
8
triggered immune
8
beneficial worm
4
worm allies
4
allies warn
4
plants
4
warn plants
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!