Row-column arrays have been shown to be able to generate 3-D ultrafast ultrasound images with an order of magnitude less independent electronic channels than traditional 2-D matrix arrays. Unfortunately, row-column array images suffer from major imaging artifacts due to high sidelobes, particularly when operating at high frame rates. This article proposes a row-column-specific beamforming technique, for orthogonal plane-wave transmissions, row-column-specific frame multiply and sum (RC-FMAS), that exploits the incoherent nature of certain row-column array artifacts. A series of volumetric images is produced using row or column transmissions of 3-D plane waves. The voxelwise geometric mean of the beamformed volumetric images from each row and column pair is taken prior to compounding, which drastically reduces the incoherent imaging artifacts in the resulting image compared to traditional coherent compounding. The effectiveness of this technique was demonstrated in silico and in vitro, and the results show a significant reduction in sidelobe level with over 16-dB improvement in sidelobe to main-lobe energy ratio. Significantly improved contrast was demonstrated with contrast ratio increased by ~10 dB and generalized contrast-to-noise ratio increased by 158% when using the proposed new method compared to the existing delay and sum during in vitro studies. The new technique allowed for higher quality 3-D imaging while maintaining high frame rate potential.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TUFFC.2021.3122094 | DOI Listing |
Phys Med Biol
January 2025
Department of Nuclear Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea (the Republic of).
This study aims to enhance positron emission tomography (PET) imaging systems by developing a continuous depth-of-interaction (DOI) measurement technique using a single-ended readout. Our primary focus is on reducing the number of readout channels in the scintillation detectors while maintaining accurate DOI estimations, using a high-pass filter-based signal multiplexing technique combined with artificial neural networks (ANNs). Approach: Instead of reading out all 64 signals from an 8×8 silicon photomultiplier array for DOI estimation, the proposed method technique reduces the signals into just four channels by applying high-pass filters with different time constants.
View Article and Find Full Text PDFSoft Robot
January 2025
State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China.
The high degree of freedom (DoF) shape morphing widely exists in biology for mimicry, camouflage, and locomotion. Currently, a lot of bionic soft/flexible actuators and robots with shape-morphing functions have been developed to realize conformity, grasp, and movement. Among these solutions, two-dimensional responsive materials and structures that can shape morph into different three-dimensional configurations are valuable for creating reversible high DoF shape morphing.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
September 2024
This paper reports a 30×12 row-column (RC) addressed flexible piezoelectric micromachined ultrasound transducer (PMUT) array with a top-down fabrication process. The fabrication uses a temporary carrier wafer from which the array device is released by deep reactive ion etching (DRIE). About 0.
View Article and Find Full Text PDFObjective: Super-resolution ultrasound (SRUS) imaging through localizing and tracking microbubbles, also known as ultrasound localization microscopy (ULM), can produce sub-diffraction resolution images of micro-vessels. We have recently demonstrated 3-D selective SRUS with a matrix array and phase change contrast agents (PCCAs). However, this method is limited to a small field of view (FOV) and by the complex hardware required.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!