Naturally occurring polysaccharides, such as cellulose, hemicellulose, and chitin, have roles in plant skeletons and/or related properties in living organisms. Their hierarchically regulated production systems show potential for designing nanocomposite fabrication using engineered microorganisms. This study has demonstrated that genetically engineered () individual cells can fabricate naturally composited nanofibrils by simultaneous production of hyaluronan (HA) and bacterial cellulose (BC). The cells were manipulated to contain hyaluronan synthase and UDP-glucose dehydrogenase genes, which are essential for HA biosynthesis. Fluorescence microscopic observations indicated the production of composited nanofibrils and suggested that HA secretion was associated with the cellulose secretory pathway in . The gel-like nanocomposite materials produced by the engineered exhibited superior properties compared with conventional nanocomposites. This genetic engineering approach facilitates the use of for designing integrated cellulose-based nanomaterials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biomac.1c00987 | DOI Listing |
Molecules
January 2025
Institute for Preservation and Conservation of Chinese Ancient Books, Fudan University Library, Fudan University, 220 Handan Road, Shanghai 200433, China.
Paper-based cultural relics experience aging and deterioration during their long-term preservation, which poses a serious threat to their lifetime. The development of conservation materials with high compatibility and low intervention has been expected to extend the lifetime of paper artifacts. As a new type of biological macromolecule, nanocellulose has been extensively utilized in paper conservation, attributed to its excellent paper compatibility, high optical transparency, outstanding mechanical strength, and large specific surface area with abundant hydroxyl groups.
View Article and Find Full Text PDFComb Chem High Throughput Screen
January 2025
Pharmaceutics Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Jammu and Kashmir, India.
Cellulose, the most prevalent biopolymer in the world, is comprehensively reviewed. Cellulose occurs in fibrillar patterns with alternating crystalline and amorphous regions. The non-toxic and -friendly nature of cellulose has made it beneficial in many fields, such as pharmaceuticals, biomedical, nanotechnology, etc.
View Article and Find Full Text PDFEnviron Res
January 2025
College of Home and Art Design, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China. Electronic address:
Cellulose has been broadly used in wastewater treatment. However, its adsorption capacity is limited by the lack of strong sites interacted with pollutants. Because of the good ability of carrying other substances, cellulose-based materials still have considerable room for improvement in adsorption capacity.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, PR China; Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, PR China; China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin University of Science and Technology, Tianjin 300457, PR China. Electronic address:
Developing sensitive and reliable methods for detecting antibiotics in water solutions is essential for protecting public health and the environment. Here, we report a novel fluorescent film with superior mechanical properties and detection response to ciprofloxacin (CIP), achieved through the in-situ growth of europium-based metal-organic frameworks on TEMPO-oxidized cellulose nanofibrils (TOCNF). Firstly, Eu(III) and 2,6-pyridinedicarboxylic acid (DPA) served as precursors, and a simple self-assembly strategy was employed to grow the composite film material (Eu-DPA@TOCNF) in situ on TOCNF, which exhibited characteristic emission peaks.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B5A3, Canada.
The practical application of polyethylene glycol (PEG) phase change materials (PCMs) necessitates exceptional shape stability, rapid thermal responsiveness, and a substantial thermal storage capacity. The present study focuses on the fabrication of a highly robust cellulose nanofibril (CNF) based aerogel with an ordered structure, serving as a three-dimensional (3D) scaffold for PEG to effectively prevent any potential leakage. Additionally, hydroxyl and amino functional groups are introduced to functionalize boron nitride nanosheets (BNNS-g), which are incorporated into the aerogel to enhance its thermal conductivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!