The cell cycle is a complex sequence of events by which cells grow and divide mitotically or meiotically. Mitosis results in the generation of two identical daughter cells, while meiosis generates gametes as a prerequisite for sexual reproduction. To study the localization and dynamics of proteins involved in the regulation and proceeding of the cell cycle, life cell imaging of proteins fused to fluorescent tags can be performed. However, in some cases this approach cannot be applied, e.g., due to low fluorescence intensity, fast bleaching, or degradation of recombinant proteins by the proteasome pathway. Instead, immunolabeling with protein-specific antibodies offers a useful approach for the analysis of intact cells. Alternatively, immunolabeling can also be applied to isolated and/or flow-sorted nuclei of particular cell cycle stages (G1, S, and G2) or of different endopolyploidy levels. The following chapter will detail indirect immunolabeling protocols to analyze the subcellular localization and distribution of cell cycle-specific proteins in Arabidopsis thaliana.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-1744-1_2DOI Listing

Publication Analysis

Top Keywords

cell cycle
12
arabidopsis thaliana
8
cell
5
immunolabeling
4
immunolabeling nuclei/chromosomes
4
nuclei/chromosomes arabidopsis
4
thaliana cell
4
cycle complex
4
complex sequence
4
sequence events
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!