Enhancing Biopharmaceutical Attributes of Khellin by Amorphous Binary Solid Dispersions.

AAPS PharmSciTech

Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India.

Published: October 2021

Khellin, a furanochromone isolated from fruits and seeds of Ammi visnaga, is traditionally used in many eastern Mediterranean countries. The plant decoction and the crystalline substance khellin have many pharmacological activities. For instance, it acts as a bronchodilator and also relieves renal colic and urethral stones, etc. However, the low water solubility (~ 120 µg/mL) and low bioavailability limit its therapeutic application. Thus, the present research explores the development of its binary and ternary solid dispersion formulations to improve its solubility and dissolution behavior. A 24-well plate miniaturized protocol was established to identify the optimal hydrophilic polymer to prepare its solid dispersions. PEG-4000 was recognized as the favorable hydrophilic carrier in preparation of solid dispersion, SSB17. The formulation displayed ~ five-fold enhancement in the aqueous solubility of khellin. The binary solid dispersion SSB17 was manufactured at a gram scale and evaluated using H-NMR, C-NMR, FT-IR, p-XRD, SEM, DSC, in vitro dissolution, and predicted pharmacokinetics. The quantitative dissolution data of SSB17 demonstrated ~ 2-3-fold improvement in AUC at physiological pH conditions. These conclusions highlight the basis for further preclinical studies on solid dispersions of khellin with improved biopharmaceutical properties.

Download full-text PDF

Source
http://dx.doi.org/10.1208/s12249-021-02126-3DOI Listing

Publication Analysis

Top Keywords

solid dispersions
12
solid dispersion
12
binary solid
8
dispersions khellin
8
dispersion ssb17
8
solid
6
khellin
5
enhancing biopharmaceutical
4
biopharmaceutical attributes
4
attributes khellin
4

Similar Publications

Cancer immunotherapy using engineered cytotoxic effector cells has demonstrated significant potential. The limited spatial complexity of existing models, however, poses a challenge to mechanistic studies attempting to approve existing approaches of effector cell-mediated cytotoxicity within a three-dimensional, solid tumor-like environment. To gain additional experimental control, we developed an approach for constructing three-dimensional (3D) culture models using smart polymers that form temperature responsive hydrogels.

View Article and Find Full Text PDF

All-solid-state Li-ion batteries (ASSBs) represent a promising leap forward in battery technology, rapidly advancing in development. Among the various solid electrolytes, argyrodite thiophosphates Li6PS5X (X = Cl, Br, I) stand out due to their high ionic conductivity, structural flexibility, and compatibility with a range of electrode materials, making them ideal candidates for efficient and scalable battery applications. However, despite significant performance advancements, the sustainability and recycling of ASSBs remain underexplored, posing a critical challenge for achieving efficient circular processes.

View Article and Find Full Text PDF

Evaporation-Induced Reticular Growth of UiO-66_NH in Chitosan Films: Adsorption of Iodine.

ACS Appl Mater Interfaces

January 2025

Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille F-59000, France.

Metal-organic frameworks (MOFs) combined with polymers as hybrid materials offer numerous advantages such as enhanced performances through synergistic effects at their interface. The primary challenge in developing polymer/MOF hybrid matrix films is ensuring optimal dispersion and strong adhesion of crystalline MOFs to the polymer without aggregation, weak interaction, or phase separation. In this study, hierarchically porous UiO-66_NH/chitosan (ZrCSx-) films were designed by crystallizing UiO-66_NH within a chitosan (CS) skeleton.

View Article and Find Full Text PDF

Challenges of cannabidiol determination in emulsified cosmetics and application of solid-phase extraction followed by HPLC-UV-MS/MS.

Anal Bioanal Chem

January 2025

Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Technická 5, 166 28, Prague 6, Prague, Czech Republic.

The recent surge in popularity of cannabidiol-infused products extends beyond food and supplements to the cosmetic industry. Accurate labeling remains a significant concern, as many products fail to meet advertised cannabidiol content and/or contain psychoactive tetrahydrocannabinol above the permissible levels. In this work, we present the use of an HPLC-UV-MS/MS method for the quantification of five major cannabinoids (cannabidiol, cannabidiolic acid, tetrahydrocannabinol, tetrahydrocannabinolic acid, and cannabigerol) in oil-in-water cosmetic emulsions.

View Article and Find Full Text PDF

Aerosol dynamics in dental clinics: effects of ventilation mode on the mitigation of airborne diseases transmission.

Environ Pollut

January 2025

State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan province, China. Electronic address:

Dental operations inherently involve a high risk of airborne cross-infection among medical staff and patients due to the exposure of respiratory secretions, which contain pathogenic microorganisms and typically spread in the form of aerosols. In order to contribute to the understanding of aerosol dynamics during dental operation and efficiently mitigate their dispersion and deposition through appropriate ventilation, 3D numerical simulations and full-scale experimental measurements were performed in this study. The indoor airflow distribution and dynamic aerosol behaviors observed under three optimized ventilation schemes (Scenario I-III) were compared with those observed under the current ventilation system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!