Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_sessionm15alv1hd1epf7ffd7fhh2kqh10efptp): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: file_get_contents(https://...@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Many types of novel stretchable and conductive materials have been developed, but all exhibit a large increase in resistance upon stretching. In this article, the design and fabrication methods of two types of electromechanical metamaterials are presented, where the first has an invariant electrical resistance and the second has a decreasing electrical resistance upon elongation. The metamaterials can be fabricated by a few rapid and simple steps: a flexible polymer part is three-dimensional printed and sprayed with a conductive coating. Parametric optimization of the geometrical dimensions of the resistance invariant structure yielded a metamaterial with a nearly constant electrical resistance up to ∼1100% of tensile strain, whose behavior could be predicted using the finite element method. The second metamaterial had a resistance that reduced by as much as 38% over a displacement of 600 μm. The design principles of these new types of metamaterials can open new possibilities for high-performance soft robots and flexible electronics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/soro.2021.0070 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!