Neutrophil and remnant clearance in immunity and inflammation.

Immunology

Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India.

Published: January 2022

Neutrophil-centred inflammation and flawed clearance of neutrophils cause and exuberate multiple pathological conditions. These most abundant leukocytes exhibit very high daily turnover in steady-state and stress conditions. Various armours including oxidative burst, NETs and proteases function against pathogens, but also dispose neutrophils to spawn pro-inflammatory responses. Neutrophils undergo death through different pathways upon ageing, infection, executing the intruder's elimination. These include non-lytic apoptosis and other lytic deaths including NETosis, necroptosis and pyroptosis with distinct disintegration of the cellular membrane. This causes release and presence of different intracellular cytotoxic, and tissue-damaging content as cell remnants in the extracellular environment. The apoptotic cells and apoptotic bodies get cleared with non-inflammatory outcomes, while lytic deaths associated remnants including histones and cell-free DNA cause pro-inflammatory responses. Indeed, the enhanced frequencies of neutrophil-associated proteases, cell-free DNA and autoantibodies in diverse pathologies including sepsis, asthma, lupus and rheumatoid arthritis, imply disturbed neutrophil resolution programmes in inflammatory and autoimmune diseases. Thus, the clearance mechanisms of neutrophils and associated remnants are vital for therapeutics. Though studies focused on clearance mechanisms of senescent or apoptotic neutrophils so far generated a good understanding of the same, clearance of neutrophils undergoing distinct lytic deaths, including NETs, are being the subjects of intense investigations. Here, in this review, we are providing the current updates in the clearance mechanisms of apoptotic neutrophils and focusing on not so well-defined recognition, uptake and degradation of neutrophils undergoing lytic death and associated remnants that may provide new therapeutic approaches in inflammation and autoimmunity.

Download full-text PDF

Source
http://dx.doi.org/10.1111/imm.13423DOI Listing

Publication Analysis

Top Keywords

lytic deaths
12
associated remnants
12
clearance mechanisms
12
neutrophils
8
clearance neutrophils
8
pro-inflammatory responses
8
deaths including
8
cell-free dna
8
apoptotic neutrophils
8
neutrophils undergoing
8

Similar Publications

Programmed-cell death is an antimicrobial defense mechanism that promotes clearance of intracellular pathogens. Toxoplasma counteracts host immune defenses by secreting effector proteins into host cells; however, how the parasite evades lytic cell death and the effectors involved remain poorly characterized. We identified ROP55, a rhoptry protein that promotes parasite survival by preventing lytic cell death in absence of IFN-γ stimulation.

View Article and Find Full Text PDF

Osteocytes are the main cells in mineralized bone tissue. Elevated osteocyte apoptosis has been observed in lytic bone lesions of patients with multiple myeloma. However, their precise contribution to bone metastasis remains unclear.

View Article and Find Full Text PDF

ZBP1-driven cell death in severe influenza.

Trends Microbiol

January 2025

Center for Immunology, Fox Chase Cancer Center, Philadelphia, PA, USA. Electronic address:

Influenza A virus (IAV) infections can cause life-threatening illness in humans. The severity of disease is directly linked to virus replication in the alveoli of the lower respiratory tract. In particular, the lytic death of infected alveolar epithelial cells (AECs) is a major driver of influenza severity.

View Article and Find Full Text PDF

Prokaryote evolution is driven in large part by the incessant arms race with viruses. Genomic investments in antivirus defense can be coarsely classified into two categories, immune systems that abrogate virus reproduction resulting in clearance, and altruistic programmed cell death (PCD) systems. Prokaryotic defense systems are enormously diverse, as revealed by an avalanche of recent discoveries, but the basic ecological determinants of defense strategy remain poorly understood.

View Article and Find Full Text PDF

Clemastine fumarate accelerates accumulation of disability in progressive multiple sclerosis by enhancing pyroptosis.

medRxiv

April 2024

Neuroimmunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD 20892, USA.

Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the central nervous system (CNS). Clemastine fumarate, the over-the-counter antihistamine and muscarinic receptor blocker, has remyelinating potential in MS. A clemastine arm was added to an ongoing platform clinical trial TRAP-MS (NCT03109288) to identify a cerebrospinal fluid (CSF) remyelination signature and to collect safety data on clemastine in patients progressing independently of relapse activity (PIRA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!