We study a population-based cellular model that starts from a single stem cell that divides stochastically to give rise to either daughter stem cells or differentiated daughter cells. There are three main components in the model: nucleus position, the underlying gene-regulatory network, and stochastic segregation of transcription factors in the daughter cells. The proportion of self-renewal and differentiated cell lines as a function of the nucleus position which in turn decides the plane of cleavage is studied. Both nuclear position and noise play an important role in determining the stem cell genealogies. We have observed both long and short genealogies in model simulation, and these compare well with experimental results from neuroblast and B-cell division. Symmetric divisions are observed in apical nuclei, while asymmetric division occurs when the nucleus is toward the base. In this model, the number of clones decreases over time, although the average clone size increases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8524154PMC
http://dx.doi.org/10.1016/j.isci.2021.103199DOI Listing

Publication Analysis

Top Keywords

stem cell
8
daughter cells
8
nucleus position
8
stochastic model
4
model homeostasis
4
homeostasis roles
4
roles noise
4
noise nuclear
4
nuclear positioning
4
positioning deciding
4

Similar Publications

Background: Exosomes are nanoscale vesicles derived from various cell types and tissues that have many potential applications, generating great interest from researchers. One particularly intriguing application of exosomes is their use as a direct therapeutic for aesthetic indications. Several studies and case reports have explored the impact of exosomes for numerous cosmetic concerns but a consensus on the outcomes of these studies has not been established.

View Article and Find Full Text PDF

Bone tissue regeneration can be affected by various architectonical features of 3D porous scaffold, for example, pore size and shape, strut size, curvature, or porosity. However, the design of additively manufactured structures studied so far was based on uniform geometrical figures and unit cell structures, which often do not resemble the natural architecture of cancellous bone. Therefore, the aim of this study was to investigate the effect of architectonical features of additively manufactured (aka 3D printed) titanium scaffolds designed based on microtomographic scans of fragments of human femurs of individuals of different ages on in vitro response of human bone-derived mesenchymal stem cells (hMSC).

View Article and Find Full Text PDF

N4-acetylcytidine (ac4C) modification is a crucial RNA modification widely present in eukaryotic RNA. Previous studies have demonstrated that ac4C plays a pivotal role in viral infections. Despite numerous studies highlighting the strong correlation between ac4C modification and cancer progression, its detailed roles and molecular mechanisms in normal physiological processes and cancer progression remain incompletely understood.

View Article and Find Full Text PDF

Sarcopenia is defined as a muscle-wasting syndrome that occurs with accelerated aging, while cachexia is a severe wasting syndrome associated with conditions such as cancer and immunodeficiency disorders, which cannot be fully addressed through conventional nutritional supplementation. Sarcopenia can be considered a component of cachexia, with the bidirectional interplay between adipose tissue and skeletal muscle potentially serving as a molecular mechanism for both conditions. However, the underlying mechanisms differ.

View Article and Find Full Text PDF

Characterization of 3,3'-iminodipropionitrile (IDPN) damaged utricle transcriptome in the adult mouse utricle.

Front Mol Neurosci

December 2024

State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China.

Utricle is an important vestibular sensory organ for maintaining balance. 3,3'-iminodipropionitrile (IDPN), a prototype nitrile toxin, has been reported to be neurotoxic and vestibulotoxic, and can be used to establish an damage model of vestibular dysfunction. However, the mechanism of utricular HCs damage caused by IDPN is unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!