Abundance data of benthic peracarid crustaceans from the South Atlantic and Southern Ocean.

Data Brief

Diversity and Evolution, Goethe University Frankfurt, Institute for Ecology, Max-von-Laue-Straße 13, Frankfurt am Main 60438, Germany.

Published: December 2021

Peracarid data were collected in the Southern Ocean and South Atlantic Ocean. Sampling was performed during nine different expeditions on board of RRS and RV , using epibenthic sledges (EBS) at depth ranging between 160-6348 m at 109 locations. The correlation between environmental variables and peracarid abundance was investigated. Abundance data comprise a total of 128570 peracarids (52366 were amphipods, 28516 were cumaceans, 36142 isopods, 5676 mysidaceans and 5870 were tanaidaceans). The presented data are useful to investigate the composition and abundance patterns of peracarid orders at a wide depth range and spatial scale in the Southern Ocean. They can also be reused to compare their abundance with that of other taxa in broader ecological surveys.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8523843PMC
http://dx.doi.org/10.1016/j.dib.2021.107468DOI Listing

Publication Analysis

Top Keywords

southern ocean
12
abundance data
8
south atlantic
8
abundance
5
data benthic
4
peracarid
4
benthic peracarid
4
peracarid crustaceans
4
crustaceans south
4
atlantic southern
4

Similar Publications

Many sharks, rays and skates are highly threatened and vulnerable to overexploitation, as such reliable monitoring of elasmobranchs is key to effective management and conservation. The mobile and elusive nature of these species makes monitoring challenging, particularly in temperate waters with low visibility. Environmental DNA (eDNA) methods present an opportunity to study these species in the absence of visual identification or invasive techniques.

View Article and Find Full Text PDF

Deep water vetulicolians from the lower Cambrian of China.

PeerJ

January 2025

Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming, China.

Vetulicolians are an enigmatic phylum of extinct Cambrian marine invertebrates. They are particularly diverse in the Chengjiang Biota of China, but representatives have been recovered from other Fossil-Lagerstätten (Cambrian Stage 3-Drumian). These organisms are characterized by a bipartite body, which is split into an anterior section and a posterior segmented section connected by a narrow constriction.

View Article and Find Full Text PDF

Phenotypical differentiation among individuals of Mediterranean horse mackerel in the Adriatic Sea was investigated through the analysis of several morphometric characters. Overall, 426 individuals of Mediterranean horse mackerels were sampled from the northern, central and southern Adriatic Sea during the summers of 2012 and 2013. Forty-six morphometric characters were measured for each individual and then compared using multivariate techniques (linear discriminant analysis).

View Article and Find Full Text PDF

Temperature seasonality regulates organic carbon burial in lake.

Nat Commun

January 2025

Laboratoire des Sciences du Climat et de l' Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France.

Organic carbon burial (OCB) in lakes, a critical component of the global carbon cycle, surpasses that in oceans, yet its response to global warming and associated feedbacks remains poorly understood. Using a well-dated biomarker sequence from the southern Tibetan Plateau and a comprehensive analysis of Holocene total organic carbon variations in lakes across the region, here we demonstrate that lake OCB significantly declined throughout the Holocene, closely linked to changes in temperature seasonality. Process-based land surface model simulations clarified the key impact of temperature seasonality on OCB in lakes: increased seasonality in the early Holocene saw warmer summers enhancing ecosystem productivity and organic matter deposition, while cooler winters improved organic matter preservation.

View Article and Find Full Text PDF

Crucial role of subsurface ocean variability in tropical cyclone genesis.

Nat Commun

January 2025

Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD, USA.

The upper ocean provides thermal energy to tropical cyclones. However, the impacts of the subsurface ocean on tropical cyclogenesis have been largely overlooked. Here, we show that the subsurface variabilities associated with the variation in the 26 °C isothermal depth have pronounced impacts on tropical cyclogenesis over global oceans.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!