Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; initially named as 2019-nCoV) is the cause of the novel coronavirus disease 2019 (COVID-19) pandemic. Its diagnosis relies on the molecular detection of the viral RNA by polymerase chain reaction (PCR) while newer rapid CRISPR-based diagnostic tools are being developed. As molecular diagnostic assays rely on the detection of unique sequences of viral nucleic acid, the target regions must be common to all coronavirus SARS-CoV-2 circulating strains, yet unique to SARS-CoV-2 with no cross-reactivity with the genome of the host and other normal or pathogenic organisms potentially present in the patient samples. This stage 1 protocol proposes cross-reactivity and inclusivity analysis of the recently developed CRISPR-based diagnostic assays. Cross-reactivity will be analyzed through comparison of target regions with the genome sequence of the human, seven coronaviruses and 21 other organisms. Inclusivity analysis will be performed through the verification of the sequence variability within the target regions using publicly available SARS-CoV-2 sequences from around the world. The absence of cross-reactivity and any mutations in target regions of the assay used would provide a higher degree of confidence in the CRISPR-based diagnostic tests being developed while the presence could help guide the assay development efforts. We believe that this study would provide potentially important information for clinicians, researchers, and decision-makers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8489407 | PMC |
http://dx.doi.org/10.7717/peerj.12050 | DOI Listing |
Sci Rep
January 2025
CrisprBits Private Limited, 3rd Floor, Plot No.-3, F-301, Ashish Complex, LSC, New Rajdhani Enclave, East Delhi, Delhi, 110092, India.
J Colloid Interface Sci
December 2024
National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, People's Republic of China.
CRISPR-Cas-based technology, emerging as a leading platform for molecular assays, has been extensively researched and applied in bioanalysis. However, achieving simultaneous and highly sensitive detection of multiple nucleic acid targets remains a significant challenge for most current CRISPR-Cas systems. Herein, a CRISPR Cas12a based calibratable single particle counting-mediated biosensor was constructed for dual RNAs logic and ultra-sensitive detection in one tube based on DNA Tetrahedron (DTN)-interface supported fluorescent particle probes coupled with a novel synergistic cascaded strategy between CRISPR Cas13a system and strand displacement amplification (SDA).
View Article and Find Full Text PDFCell Biosci
December 2024
Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy.
N-myc downstream-regulated gene 1 (NDRG1) is a member of the NDRG family of intracellular proteins and plays a central role in a wide range of biological processes including stress response, differentiation, and metabolism. The overexpression of NDRG1 is an indicator of poor prognosis in various types of cancer. Here, we found that NDRG1 is an independent prognostic marker of poor outcome in breast cancer (BC).
View Article and Find Full Text PDFFASEB J
December 2024
State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Lanzhou, China.
Infectious diseases are a serious threat to the existence of animals and humans' life. In the 21st century, the emergence and re-emergence of several zoonotic and non-zoonotic global pandemic diseases of socio-economic importance has affected billions of humans and animals. The need for expensive equipment and laboratories, non-availability of on-site testing abilities, with time-consuming and low sensitivity and specificity issues of currently available diagnostic techniques to identify these pathogenic micro-organisms on a large scale highlighted the need for developing cheap, portable environment friendly diagnostic methods.
View Article and Find Full Text PDFTalanta
December 2024
Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China. Electronic address:
Nucleic acid detection is considered the golden standard for diagnosing infectious diseases caused by various pathogens, including viruses, bacteria, and parasites. PCR and other amplification-based technologies are highly sensitive and specific, allowing for accurate detection and identification of low-level causative pathogens by targeting and amplifying their unique genetic segment (DNA or RNA). However, it is important to recognize that machinery-dependent diagnostic methods may only sometimes be available or practical in resource-limited settings, where direct implementation can be challenging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!