Auxetic vibration behaviours of periodic tetrahedral units with a shared edge.

R Soc Open Sci

Department of Mechanical Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.

Published: October 2021

A very low-frequency mode supported within an auxetic structure is presented. We propose a constrained periodic framework with corner-to-corner and edge-to-edge sharing of tetrahedra and develop a kinematic model incorporating two types of linear springs to calculate the momentum term under infinitesimal transformations. The modal analysis shows that the microstructure with its two degrees of freedom has both low- and high-frequency modes under auxetic transformations. The low-frequency mode approaches zero frequency when the corresponding spring constant tends to zero. With regard to coupled eigenmodes, the stress-strain relationship of the uniaxial forced vibration covers a wide range. When excited, a very slow motion is clearly observed along with a structural expansion for almost zero values of the linear elastic modulus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8527201PMC
http://dx.doi.org/10.1098/rsos.210768DOI Listing

Publication Analysis

Top Keywords

low-frequency mode
8
auxetic vibration
4
vibration behaviours
4
behaviours periodic
4
periodic tetrahedral
4
tetrahedral units
4
units shared
4
shared edge
4
edge low-frequency
4
mode supported
4

Similar Publications

The European Commission mandated EFSA to assess the toxicity of bromide, the existing maximum residue levels (MRLs), and possible transfer from feed into food of animal origin. The critical effects of bromide in experimental animals are on the thyroid and central nervous system. Changes in thyroid hormone homeostasis could result in neurodevelopmental toxicity, among other adverse effects.

View Article and Find Full Text PDF

A significant proportion of patients who have recovered from COVID-19 suffer from persistent symptoms, referred to as "post-acute sequelae of SARS-CoV-2 infection (PASC)". Abnormal brain intrinsic activity has been observed in PASC patients, but the patterns of frequency-dependent intrinsic activity in the PASC and non-PASC (recovered COVID-19 patients without persistent symptoms) groups and their association with neuropsychiatric sequelae remain unclear in PASC. Twenty-nine PASC patients, 27 non-PASC subjects, and 31 healthy controls (HCs) were recruited.

View Article and Find Full Text PDF

Background: Neurovascular coupling (NVC), as indicated by a comprehensive analysis of the amplitude of low-frequency fluctuation (ALFF) and cerebral blood flow (CBF), provides mechanistic insights into neurological disorders. Patients undergoing peritoneal dialysis (PD) and hemodialysis (HD) often face cognitive impairment, the causes of which are not fully understood.

Methods: ALFF was derived from functional magnetic resonance imaging, and CBF was quantified using arterial spin labeling in a cohort comprising 58 patients with PD, 60 patients with HD and 62 healthy controls.

View Article and Find Full Text PDF

Deciphering the abnormal IR spectral density of phthalic acid dimer crystals: Unveiling the role of the dynamical effects of the Davydov coupling and the mechanisms of relaxation.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Physics Department, College of Science, King Faisal University, Al Ahsa, 31982, Saudi Arabia. Electronic address:

To consistently determine the anomalous characteristics of phthalic acid crystal (PAC) derivatives, we performed quantum dynamics simulations of the infrared spectral density of the h-PAC and d-PAC isotopomers that show up in the H/D isotopic frequency domain at two different temperatures viz. 77 and 298 K. A theoretical framework explaining the dynamical cooperative interactions within the hydrogen bonds (HBs) in the PAC crystals across a simulation of IR spectral density of the stretching band was developed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!