A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Constructing catalyst knowledge networks from catalyst big data in oxidative coupling of methane for designing catalysts. | LitMetric

Designing high performance catalysts for the oxidative coupling of methane (OCM) reaction is often hindered by inconsistent catalyst data, which often leads to difficulties in extracting information such as combinatorial effects of elements upon catalyst performance as well as difficulties in reaching yields beyond a particular threshold. In order to investigate C yields more systematically, high throughput experiments are conducted in an effort to mass-produce catalyst-related data in a way that provides more consistency and structure. Graph theory is applied in order to visualize underlying trends in the transformation of high-throughput data into networks, which are then used to design new catalysts that potentially result in high C yields during the OCM reaction. Transforming high-throughput data in this manner has resulted in a representation of catalyst data that is more intuitive to use and also has resulted in the successful design of a myriad of catalysts that elicit high C yields, several of which resulted in yields greater than those originally reported in the high-throughput data. Thus, transforming high-throughput catalytic data into catalyst design-friendly maps provides a new method of catalyst design that is more efficient and has a higher likelihood of resulting in high performance catalysts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8494033PMC
http://dx.doi.org/10.1039/d1sc04390kDOI Listing

Publication Analysis

Top Keywords

high-throughput data
12
data
8
oxidative coupling
8
coupling methane
8
high performance
8
performance catalysts
8
ocm reaction
8
catalyst data
8
high yields
8
transforming high-throughput
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!