Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Designing high performance catalysts for the oxidative coupling of methane (OCM) reaction is often hindered by inconsistent catalyst data, which often leads to difficulties in extracting information such as combinatorial effects of elements upon catalyst performance as well as difficulties in reaching yields beyond a particular threshold. In order to investigate C yields more systematically, high throughput experiments are conducted in an effort to mass-produce catalyst-related data in a way that provides more consistency and structure. Graph theory is applied in order to visualize underlying trends in the transformation of high-throughput data into networks, which are then used to design new catalysts that potentially result in high C yields during the OCM reaction. Transforming high-throughput data in this manner has resulted in a representation of catalyst data that is more intuitive to use and also has resulted in the successful design of a myriad of catalysts that elicit high C yields, several of which resulted in yields greater than those originally reported in the high-throughput data. Thus, transforming high-throughput catalytic data into catalyst design-friendly maps provides a new method of catalyst design that is more efficient and has a higher likelihood of resulting in high performance catalysts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8494033 | PMC |
http://dx.doi.org/10.1039/d1sc04390k | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!