Objective: To measure SARS-CoV-2 RNA in sewage in a low-resource community in order to determine if it can be considered as an estimator of changes in the prevalence of COVID-19 in the population.
Methods: In this descriptive observational study we collected samples of surface waters contaminated with sewage and optimized a method of purification of viral RNA using PEG concentration. We determined the amount of genetic material by quantitative real-time PCR using the CDC method for SARS-CoV-2 detection.
Results: We quantified viral RNA in surface waters contaminated with sewage of a low resource community and determined that temporal trends of SARS-CoV-2 in wastewater samples mirrored trends in COVID-19 active cases.
Conclusions: Measuring of SARS-CoV-2 RNA in sewage can be applied in low-resource communities without connection to sewers as an estimator of changes in the prevalence of COVID-19.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8530007 | PMC |
http://dx.doi.org/10.26633/RPSP.2021.137 | DOI Listing |
Alzheimers Dement
December 2024
Amsterdam UMC, Amsterdam, Netherlands.
Background: The TMEM106B protein is critical for proper functioning of the endolysomal system, which is utilised by all cells to traffic and degrade molecular cargo. Genome-wide association studies identified a haplotype in the TMEM106B gene that is associated with increased risk for Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and frontotemporal lobar degeneration with TAR DNA binding protein inclusions (FTLD-TDP). However, the causal variant that drives the association has thus far remained elusive.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Institute of Neurosciences, L'Hospitalet de Llobregat, Barcelona, Spain.
Background: The increased vulnerability of Alzheimer's disease patients to severe SARS-CoV-2 infection raises crucial concerns, especially with the potential transition of the COVID-19 pandemic to an endemic state. Given the rising prevalence of Alzheimer's in an aging world-wide population, elucidating whether SARS-CoV-2 infection may induce or accelerate neurodegeneration becomes imperative.
Method: To investigate the neurodegenerative effects of SARS-CoV-2 infection, we generated brain organoids using human induced pluripotent stem lines from one non-demented control, one with sporadic Alzheimer's, and one with familial Alzheimer's.
Alzheimers Dement
December 2024
UMass Chan Medical School, Worcester, MA, USA.
Background: Herpes simplex virus (HSV-1) has been associated with molecular and cellular signatures associated with Alzheimer's disease (AD). We explored the use of both recent single-cell and bulk transcriptomics technologies in dissecting the molecular and cellular virus-human interactions with HSV-1 infected cerebral organoids (2D and 3D). We compared the results with our previous observations from bulk RNA sequencing and discovered novel insights into HSV-1 induced AD-associated molecular pathology that were made possible by each transcriptomics technology.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, USA.
Background: SARS-CoV-2 causes a variety of neurological sequelae in COVID-19 survivors, including fatigue and cognitive dysfunction. Endothelial dysfunction is the unifying and central mechanism of COVID-19 illness and a major risk factor for vascular dementia (VaD). Endothelial dysfunction stems, in part, from an imbalance between nitric oxide (NO) generated by the endothelial nitric oxide synthase (eNOS) and reactive oxidant species produced by uncoupled-eNOS.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, USA.
Background: Increasing evidence suggests that SARS-CoV-2 infection may lead to early onset and aggravation of pre-existing vascular dementia and Alzheimer's disease. Methylene tetrahydrofolate reductase (Mthfr) is a critical enzyme in folate metabolism, also required for optimal brain function. Mthfr deficient mice display cognitive impairments and neurovascular deficits and polymorphisms in MTHFR increases dementia risk.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!